Skip to main content

Approaches to Study CFTR Pre-mRNA Splicing Defects

  • Protocol
  • First Online:
Cystic Fibrosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 741))

Abstract

In cystic fibrosis, genomic variants can result in defective processing of the CFTR precursor mRNA. Due to the complexity of the splicing process, the evaluation of their pathological effect is an important aspect both in the diagnostic field and in the study of basic regulatory mechanism. Efficient and correct splicing of CFTR relies on a complex process that includes recognition within the nascent transcripts of a series of different splicing regulatory elements that frequently overlap with the coding sequences. Identification of these elements is essential to determine the pathological impact of splicing-affecting genomic variants. In this chapter, to evaluate the effect of CFTR DNA variations on the pre-mRNA splicing process, different tools based on hybrid minigenes will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cartegni, L., Chew, S. L., and Krainer, A. R. (2002) Listening to silence and understanding nonsense: Exonic mutations that affect splicing. Nat. Rev. Genet. 3, 285–298.

    Article  PubMed  CAS  Google Scholar 

  2. Pagani, F., Buratti, E., Stuani, C., and Baralle, F. E. (2003) Missense, nonsense and neutral mutations define juxtaposed regulatory elements of splicing in CFTR Exon 9. J. Biol. Chem. 278, 26580–26588.

    Article  PubMed  CAS  Google Scholar 

  3. Pagani, F., Stuani, C., Tzetis, M., Kanavakis, E., Efthymiadou, A., Doudounakis, S. et al. (2003) New type of disease causing mutations: The example of the composite exonic regulatory elements of splicing in CFTR exon 12. Hum. Mol. Genet. 12, 1111–1120.

    Article  PubMed  CAS  Google Scholar 

  4. Faustino, N. A., and Cooper, T. A. (2003) Pre-mRNA splicing and human disease. Genes Dev. 17, 419–437.

    Article  PubMed  CAS  Google Scholar 

  5. Pagani, F., and Baralle, F. E. (2004) Genomic variants in exons and introns: Identifying the splicing spoilers. Nat. Rev. Genet. 5, 389–396.

    Article  PubMed  CAS  Google Scholar 

  6. Buratti, E., Baralle, M., and Baralle, F. E. (2006) Defective splicing, disease and therapy: Searching for master checkpoints in exon definition. Nucleic Acids Res. 34, 3494–3510.

    Article  PubMed  CAS  Google Scholar 

  7. Cooper, T. A. (2005) Use of minigene systems to dissect alternative splicing elements. Methods 37, 331–340.

    Article  PubMed  CAS  Google Scholar 

  8. Pagani, F., Raponi, M., and Baralle, F. E. (2005) Synonymous mutations in CFTR exon 12 affect splicing and are not neutral in evolution. Proc. Natl. Acad. Sci. USA 102, 6368–6372.

    Article  PubMed  CAS  Google Scholar 

  9. Park, J. W., and Graveley, B. R. (2005) Use of RNA interference to dissect the roles of trans-acting factors in alternative pre-mRNA splicing. Methods 37, 341–344.

    Article  PubMed  CAS  Google Scholar 

  10. Hefferon, T. W., Broackes-Carter, F. C., Harris, A., and Cutting, G. R. (2002) Atypical 5′ splice sites cause CFTR exon 9 to be vulnerable to skipping. Am. J. Hum. Genet. 71, 294–303.

    Article  PubMed  CAS  Google Scholar 

  11. Cuppens, H., Lin, W., Jaspers, M., Costes, B., Teng, H., Vankeerberghen, A. J. et al. (1998) Polyvariant mutant cystic fibrosis transmembrane conductance regulator genes. The polymorphic (Tg)m locus explains the partial penetrance of the T5 polymorphism as a disease mutation. J. Clin. Invest. 101, 487–496.

    Article  PubMed  CAS  Google Scholar 

  12. Chu, C. S., Trapnell, B. C., Curristin, S., Cutting, G. R., and Crystal, R. G. (1993) Genetic basis of variable exon 9 skipping in cystic fibrosis transmembrane conductance regulator mRNA. Nat. Genet. 3, 151–156.

    Article  PubMed  CAS  Google Scholar 

  13. Buratti, E., and Baralle, F. E. (2001) Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J. Biol. Chem. 276, 36337–36343.

    Article  PubMed  CAS  Google Scholar 

  14. Buratti, E., Dörk, T., Zuccato, E., Pagani, F., Romano, M., and Baralle, F. E. (2001) Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping. EMBO J. 20, 1774–1784.

    Article  PubMed  CAS  Google Scholar 

  15. Ayala, Y. M., Pagani, F., and Baralle, F. E. (2006) TDP43 depletion rescues aberrant CFTR exon 9 skipping. FEBS Lett. 580, 1339–1344.

    Article  PubMed  CAS  Google Scholar 

  16. D’Ambrogio, A., Buratti, E., Stuani, C., Guarnaccia, C., Romano, M., Ayala, Y. M. et al. (2009) Functional mapping of the interaction between TDP-43 and hnRNP A2 in vivo. Nucleic Acids Res. 37, 4116–4126.

    Article  PubMed  Google Scholar 

  17. Pagani, F., Buratti, E., Stuani, C., Romano, M., Zuccato, E., Niksic, M. et al. (2000) Splicing factors induce cystic fibrosis transmembrane regulator exon 9 skipping through a nonevolutionary conserved intronic element. J. Biol. Chem. 275, 21041–21047.

    Article  PubMed  CAS  Google Scholar 

  18. Niksic, M., Romano, M., Buratti, E., Pagani, F., and Baralle, F. E. (1999) Functional analysis of cis-acting elements regulating the alternative splicing of human CFTR exon 9. Hum. Mol. Genet. 8, 2339–2349.

    Article  PubMed  CAS  Google Scholar 

  19. Cartegni, L., Wang, J., Zhu, Z., Zhang, M. Q., and Krainer, A. R. (2003) ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res. 31, 3568–3571.

    Article  PubMed  CAS  Google Scholar 

  20. Fairbrother, W. G., Yeh, R. F., Sharp, P. A., and Burge, C. B. (2002) Predictive identification of exonic splicing enhancers in human genes. Science 297, 1007–1013.

    Article  PubMed  CAS  Google Scholar 

  21. Fairbrother, W. G., Holste, D., Burge, C. B., and Sharp, P. A. (2004) Single nucleotide polymorphism-based validation of exonic splicing enhancers. PLoS Biol. 2, E268.

    Article  PubMed  Google Scholar 

  22. Zhang, X. H., and Chasin, L. A. (2004) Computational definition of sequence motifs governing constitutive exon splicing. Genes Dev. 18, 1241–1250.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang, X. H., Kangsamaksin, T., Chao, M. S., Banerjee, J. K., and Chasin, L. A. (2005) Exon inclusion is dependent on predictable exonic splicing enhancers. Mol. Cell. Biol. 25, 7323–7332.

    Article  PubMed  CAS  Google Scholar 

  24. Venables, J. P., Koh, C. S., Froehlich, U., Lapointe, E., Couture, S., Inkel, L. et al. (2008) Multiple and specific mRNA processing targets for the major human hnRNP proteins. Mol. Cell. Biol. 28, 6033–6043.

    Article  PubMed  CAS  Google Scholar 

  25. Goina, E., Skoko, N., and Pagani, F. (2008) Binding of DAZAP1 and hnRNPA1/A2 to an exonic splicing silencer in a natural BRCA1 exon 18 mutant. Mol. Cell. Biol. 28, 3850–3860.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Goina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Goina, E., Fernandez-Alanis, E., Pagani, F. (2011). Approaches to Study CFTR Pre-mRNA Splicing Defects. In: Amaral, M., Kunzelmann, K. (eds) Cystic Fibrosis. Methods in Molecular Biology, vol 741. Humana Press. https://doi.org/10.1007/978-1-61779-117-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-117-8_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-116-1

  • Online ISBN: 978-1-61779-117-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics