Skip to main content

RNA-Seq Analysis of Gene Expression and Alternative Splicing by Double-Random Priming Strategy

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 729))

Abstract

Transcriptome analysis by deep sequencing, more commonly known as RNA-seq is, becoming the method of choice for gene discovery and quantitative splicing detection. We published a double-random priming RNA-seq approach capable of generating strand-specific information [Li et al., Proc Natl Acad Sci USA 105:20179–20184, 2008]. Poly(A)+  RNA from a treated and an untreated sample were utilized to generate RNA-seq libraries that were sequenced on the Illumina GA1 analyzer. Statistical analysis of approximately ten million sequence reads generated from both control and treated cells suggests that this tag density is sufficient for quantitative analysis of gene expression. We were also able to detect a large fraction of reads corresponding to annotated alternative exons, with a subset of the reads matching known and detecting new splice junctions. In this chapter, we provide a detailed, bench-ready protocol for the double-random priming method and provide user-friendly templates for the curve-fitting model described in the paper to estimate the tag density needed for optimal detection of regulated gene expression and alternative splicing.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Li, H., Lovci, M. T., Kwon, Y. S., Rosenfeld, M. G., Fu, X. D., and Yeo, G. W. (2008) Determination of tag density required for digital transcriptome analysis: application to an androgen-sensitive prostate cancer model. Proc Natl Acad Sci USA. 105, 20179–20184.

    Article  PubMed  CAS  Google Scholar 

  2. Perocchi, F., Xu, Z., Clauder-Munster, S., and Steinmetz, L. M. (2007) Antisense artifacts in transcriptome microarray experiments are resolved by actinomycin D. Nucleic Acids Res. 35, e128.

    Article  PubMed  Google Scholar 

  3. Carninci, P., Kasukawa, T., Katayama, S., et al. (2005) The transcriptional landscape of the mammalian genome. Science 309, 1559–1563.

    Article  PubMed  CAS  Google Scholar 

  4. Cheng, J., Kapranov, P., Drenkow, J., Dike, S., Brubaker, S., Patel, S., Long, J., Stern, D., Tammana, H., Helt, G., Sementchenko, V., Piccolboni, A., Bekiranov, S., Bailey, D. K., Ganesh, M., Ghosh, S., Bell, I., Gerhard, D. S., and Gingeras, T. R. (2005) Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308, 1149–1154.

    Article  PubMed  CAS  Google Scholar 

  5. Karolchik, D., Baertsch, R., Diekhans, M., Furey, T. S., Hinrichs, A., Lu, Y. T., Roskin, K. M., Schwartz, M., Sugnet, C. W., Thomas, D. J., Weber, R. J., Haussler, D., and Kent, W. J. (2003) The UCSC genome browser database. Nucleic Acids Res. 31, 51–54.

    Article  PubMed  CAS  Google Scholar 

  6. Yeo, G. W., Van Nostrand, E. L., and Liang, T. Y. (2007) Discovery and analysis of evolutionarily conserved intronic splicing regulatory elements. PLoS Genet. 3, e85.

    Article  PubMed  Google Scholar 

  7. Hillier, L. W., Marth, G. T., Quinlan, A. R., et al. (2008) Whole-genome sequencing and variant discovery in C. elegans. Nat. Meth. 5, 183–188.

    Article  CAS  Google Scholar 

  8. De Bona, F., Ossowski, S., Schneeberger, K., and Ratsch, G. (2008) Optimal spliced alignments of short sequence reads. Bioinformatics 24, i174–i180.

    Article  PubMed  Google Scholar 

  9. Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25.

    Article  PubMed  Google Scholar 

  10. Weese, D., Emde, A. K., Rausch, T., Doring, A., and Reinert, K. (2009) RazerS–fast read mapping with sensitivity control. Genome Res. 19, 1646–1654.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the members of the Yeo and Fu laboratories for critical reading of this manuscript. This research was supported by grants to G.W.Y. and X.D.F. from the US National Institutes of Health (HG004659 and GM084317 and GM052872) for funding this research and the development of this protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gene W. Yeo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lovci, M.T., Li, HR., Fu, XD., Yeo, G.W. (2011). RNA-Seq Analysis of Gene Expression and Alternative Splicing by Double-Random Priming Strategy. In: Lu, C., Browse, J., Wallis, J. (eds) cDNA Libraries. Methods in Molecular Biology, vol 729. Humana Press. https://doi.org/10.1007/978-1-61779-065-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-065-2_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-064-5

  • Online ISBN: 978-1-61779-065-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics