Skip to main content

Light Microscopy in Aquatic Ecology: Methods for Plankton Communities Studies

  • Protocol
  • First Online:
Light Microscopy

Abstract

Planktonic organisms dominate waters in ponds, lakes and oceans. Because of their short life cycles, plankters respond quickly to environmental changes and the variability in their density and composition are more likely to indicate the quality of the water mass in which they are found. Planktonic community is formed by numerous organisms from distinct taxonomic position, ranging from 0.2 μm up to 2 mm. Despite others, the light microscopy is the most used apparatus to enumerate these organisms and different techniques are necessary to cover differences in morphology and size. Here we present some of the main light microscopy methods used to quantify different components of planktonic communities, such as virus, bacteria, algae and animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hobbie, J. E., Daley, R. J., Jasper, S. (1977) Use of nucleopore filters for counting bacteria by flurescence microscopy. Appl Environ Microb 49, 1225–1228.

    Google Scholar 

  2. Noble, R. T., Fuhrman, J. A. (1998) Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Microb Ecol 14, 113–118.

    Article  Google Scholar 

  3. Patel, A., Noble, R. T., Steele, J. A., Schwalbach, M. S., Hewson, I., Furhman, A. (2007) Virus and prokaryote enumeration from planktonic aquatic environments by epifluorescence microscopy with SYBR Green I. Nat Protoc 2, 269–276.

    Article  PubMed  CAS  Google Scholar 

  4. Kirchman, D. J. (1993) Statistical analysis of direct counts of microbial abundance, in (Kemp, P. F., Sherr, B. F., Sherr, E. B., Cole, J. J. eds.), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, FL, pp. 117–119.

    Google Scholar 

  5. Daley, R. J, Hobbie, J. E. (1975) Direct counts of aquatic bacteria by a modified epifluorescence technique. Limnol Oceanogr 20, 875–882.

    Article  Google Scholar 

  6. Utermöhl, H. (1958) Zur Vervolkomnung der quantitativen phytoplankton–methodik. Mitt Int Ver Theor Angew Limnol 9, 1–38.

    Google Scholar 

  7. Margalef, R. (1969) Counting, in (Vollenweider, R. A., Talling, J. F., Westlake, D. F. eds.). A Manual on Methods for Measuring Primary Production in Aquatic Environments (I.B.P. Handbook 12). Blackwell Scient. Publ., Oxford and Edinburgh, pp. 7–14.

    Google Scholar 

  8. Uhelinger, V. (1964) Étude statistique des methods de dénobrement planctonique. Arch Sci 17, 121–223.

    Google Scholar 

  9. Lund, J. W. H., Kipling, C., Lecren, E. D. (1958) The inverted microscope method of estimating algal number and statistical basis of estimating by counting. Hydrobiologia 11, 143–170.

    Article  Google Scholar 

  10. Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U., Zohary, T. (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35, 408–424.

    Article  Google Scholar 

  11. Gates, M. A., Rogerson, A., Berger, J. (1982) Dry to wet biomass conversion constant for Tetrahymena Elliot (Ciliophora, Protozoa). Oecologia 55, 145–148.

    Article  Google Scholar 

  12. Ruttner-Kolisko, A. (1977) Suggestions for biomass calculation of planktonic rotifers. Arch Hydrobiol 8, 71–76.

    Google Scholar 

  13. Pauli, H. R. (1989) A new method to estimate individual dry weights of rotifers. Hydrobiologia 186/197, 355–361.

    Article  Google Scholar 

  14. Dumont, H. J, Van De Velde, I., Dumont, S. (1975) The dry weight estimate of biomass in a selection of cladocera, copepoda and rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19, 75–97.

    Article  Google Scholar 

  15. Manca, M., Comoli, P. (1999) Studies on zooplankton of Lago Paione Superior. J Limnol 58, 131–135.

    Google Scholar 

  16. Agustí, S., Sánchez, C. (2002) Cell viability in natural phytoplankton communities quantified by a membrane permeability probe. Limnol Oceanogr 47, 818–828.

    Article  Google Scholar 

  17. Agustí, S., Alou, E., Hoyer, MV., Frazer, T. K., Canfield, D. E. (2006) Cell death in lake phytoplankton communities. Freshwater Biol 51, 1496–1506.

    Article  Google Scholar 

  18. Freese, H. M., Karsten, H. M., Schumann, R. (2006) Bacterial abundance, activity, and viability in the eutrophic river Warnow, Northeast Germany. Microb Ecol 51, 117–127.

    Article  PubMed  CAS  Google Scholar 

  19. Dagnino, D., de Abreu Meireles, D., de Aquino Almeida, J. C. (2006) Growth of nutrient–replete microcystis PCC 7806 cultures is inhibited by an extracellular signal produced by chlorotic cultures. Environ Microbiol 8, 30–36.

    Article  PubMed  CAS  Google Scholar 

  20. Lengke, M. F., Ravel, B., Fleet, M. E., Wanger, G., Gordon, R. A. S., Southam, G. (2006) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from Gold (III)-Chloride complex. Environ Sci Technol 40, 6304–6309.

    Article  PubMed  CAS  Google Scholar 

  21. Schumann, R., Schiewer, U., Karsten, U., Rieling, T. (2003) Viability of bacteria from different aquatic habitats. II. Cellular fluorescent markers for membrane integrity and metabolic activity. Aquat Microb Ecol 32, 137–150.

    Article  Google Scholar 

  22. Poter, K. G, Feig, Y. S. (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25, 943–948.

    Article  Google Scholar 

  23. Massana, R., Gasol, M. J., Bjørnsen, P. K., Black-Burn, N., Hagström, A., Hietanen, S., Hygum, B. H., Kuparinen, J., Pedrós-Alió, C. (1997) Measurement of bacterial size via image analysis of epifluorescence preparations: description of an inexpensive system and solutions to some of the most common problems. Scientia Marina 61, 397–407.

    Google Scholar 

  24. Norland, S. (1993) The relation between biomass and volume of bacteria, in (Kemp, P. F., Sherr, B. F., Sherr, E. B., Cole, J. J. eds.), Handbook of Methods in Aquatic Microbial Ecology. Lewis, Boca Raton, FL, pp. 303–308.

    Google Scholar 

  25. Cottrell, M. T., Kirchman, D. L. (2000) Community composition of marine bacterioplankton determined by 16 s RRNA gene clone libraries and fluorescence in situ hybridization. Appl Environ Microbiol 66, 5116–5122.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Carolina S. Soares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Soares, M.C.S. et al. (2011). Light Microscopy in Aquatic Ecology: Methods for Plankton Communities Studies. In: Chiarini-Garcia, H., Melo, R. (eds) Light Microscopy. Methods in Molecular Biology, vol 689. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-950-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-950-5_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-949-9

  • Online ISBN: 978-1-60761-950-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics