Skip to main content

Membrane Lipidomics and the Geometry of Unsaturated Fatty Acids From Biomimetic Models to Biological Consequences

  • Protocol
  • First Online:
Book cover Lipidomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 579))

Summary

In the last decades, free radical processes delineated an interdisciplinary field linking chemistry to biology and medicine. Free radical mechanisms became of importance as molecular basis of physiological and pathological conditions. Lipids, in particular, unsaturated fatty acids, are susceptible of free radical attack. The reactivity of the double bond toward free radicals is well known, in particular the reversible addition of radical species to this functionality determines the cistrans double bond isomerization. Since the prevalent geometry displayed by unsaturated fatty acids in eukaryotes is cis, the occurrence of the cistrans isomerization by free radicals corresponds to the loss of an important structural information linked to biological activity. The formation of trans isomers can have important meaning and consequences connected to radical stress.

Free radical isomerization of membrane fatty acids has been the subject of research coupling the top-down approach by model studies, such as biomimetic chemistry in liposomes, with the bottom-up approach dealing with the examination of cell membrane lipidome in living systems under several physiopathological conditions. Methodologies and molecular libraries have been settled, for both liposome experiments and the examination of the radical stress in biological membranes. This chapter will give an overview of the current procedures used for liposome models and the cistrans isomerization experiments, in order to build-up a library of trans geometrical fatty acid isomers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watson AD. 2006. Lipidomics: a global approach to lipid analysis in biological systems, J Lipid Res 47:2101–2111.

    Article  PubMed  CAS  Google Scholar 

  2. Wenk MR. 2005. The emerging field of lipidomics. Nat Rev Drug Discov 4:594–610.

    Article  PubMed  CAS  Google Scholar 

  3. Ferreri C, Chatgilialoglu C. 2005. Geometrical trans lipid isomers: a new target for lipidomics. ChemBioChem 6:1722–1734.

    Article  PubMed  CAS  Google Scholar 

  4. Chatgilialoglu C, Ferreri C. 2005. Trans lipids: the free radical path. Chem Rev 31:441–448.

    Google Scholar 

  5. Ferreri C, Panagiotaki M, Chatgilialoglu C. 2007. Trans fatty acids in membranes: the free radical path. Mol Biotechnol 37:19–25.

    Article  PubMed  CAS  Google Scholar 

  6. Dugave C, Demange L. 2003. Cis–trans isomerization of organic molecules and biomolecules: implications and applications. Chem Rev 103:2475–2532.

    Article  PubMed  CAS  Google Scholar 

  7. Vance DE, Vance JE, eds. 2002. Biochemistry of lipids, lipoproteins and membranes, 4th ed., Elsevier: Amsterdam.

    Google Scholar 

  8. Sébédio JL, Christie WW, eds. 1998. Trans fatty acids in human nutrition. The Oily Press: Dundee.

    Google Scholar 

  9. Chatgilialoglu C. 2007. Fats of life… explaining the villainous properties of trans fatty acids. Optimum Nutr 40–43.

    Google Scholar 

  10. Larquè E, Zamora S, Gil A. 2001. Dietary trans fatty acids in early life: a review. Early Human Develop. 65:S31–S41.

    Article  Google Scholar 

  11. Hu FB, Stampfer MJ, Manson JE, Rimm E, Colditz GA, Rosner BA, Hennekens CH, Willett WC. 1997. Dietary fat intake and the risk of coronary artery disease in women. N Engl J Med 337:1491–1499.

    Article  PubMed  CAS  Google Scholar 

  12. Koletzko B, Decsi T. 1997. Metabolic aspects of trans fatty acids. Clin Nutr 16:229–237.

    Article  PubMed  CAS  Google Scholar 

  13. Sébédio JL, Vermunt SHF, Chardigny JM, Beaufrére B, Mensink RP, Armstrong RA, Christie WW, Niemela J, Hènon G, Riemersma RA. 2005. The effect of dietary α-linolenic acid on plasma lipids and platelet fatty acid composition: the transLinE study. Eur J Clin Nutr 54:104–113.

    Article  Google Scholar 

  14. Bender Brandt M, LeGault LA. 2003. What’s new on nutrition labelling at the United States Food and Drug Administration? J Food Comp Anal 16:383–393.

    Article  Google Scholar 

  15. Dieffenbacher A, Dysseler P. 1997. The determination of trans unsaturated fatty acids in edible oils and fats by capillary gas–liquid chromarography. Pure Appl Chem 69:1829–1837.

    Article  CAS  Google Scholar 

  16. Firestone D ed. 1998. Official Methods and Recommended Practices, Recommended Practice Cd 14d-96, 5th ed, American Oil Chemists’ Society: Champaign.

    Google Scholar 

  17. Samadi A, Andreu I, Ferreri C, Dellonte S, Chatgilialoglu C. 2004. Thiyl radical–catalysed isomerization of oils: an entry to the trans lipid library. J Am Oil Chem Soc 81:753–758.

    Article  CAS  Google Scholar 

  18. Mjøs SA. 2005. Properties of trans isomers of eicosapentaenoic acid and docosahexaenoic acid methyl esters on cyanopropyl stationary phases. J Chromat A 1100:185–192.

    Article  Google Scholar 

  19. Ji H, Voinov VG, Deinzer ML, Barofsky DF. 2007. Distinguishing between cis/trans isomers of monounsaturated fatty Acids by FAB MS. Anal Chem 79:1519–1522.

    Article  PubMed  CAS  Google Scholar 

  20. Williams CM, Mander LN. 2001. Chromatography with silver nitrate. Tetrahedron 57:425–477.

    Article  CAS  Google Scholar 

  21. Lock AL, Corl BA, Barbano DM, Bauman DE, Ip C. 2004. The anticarcinogenic effect of trans-11 18:1 is dependent on its conversion to cis-9, trans-11 CLA by delta9-desaturase in rats. J Nutr 134:2698–2704.

    PubMed  CAS  Google Scholar 

  22. Ferreri C, Kratzsch S, Brede O, Marciniak B, Chatgilialoglu C. 2005. Trans lipid formation induced by thiols in human monocytic leukemia cells. Free Radical Biol Med 38:1180–1187.

    Article  CAS  Google Scholar 

  23. Cevc G, ed. 1993. Phospholipid Handbook, Marcel Dekker: New York.

    Google Scholar 

  24. New RRC. 1990. Liposomes: A Practical Approach. IRL Press: Oxford.

    Google Scholar 

  25. Lasic DD. 1993. Liposomes. From Physics to Applications. Elsevier: Amsterdam.

    Google Scholar 

  26. Ferreri C, Manco I, Faraone-Mennella MR, Torreggiani A, Tamba M, Manara S, Chatgilialoglu C. 2006. The reaction of hydrogen atoms with methionine residues: a model of reductive radical stress causing tandem protein–lipid damage. ChemBioChem 7:1738–1744.

    Article  PubMed  CAS  Google Scholar 

  27. Mozziconacci O, Bobrowski K, Ferreri C, Chatgilialoglu C. 2007. Reaction of hydrogen atom with Met-enkephalin and related peptides. Chem Eur J 13:2029–2033

    Article  PubMed  CAS  Google Scholar 

  28. Niki E, Kawakami A, Yamamoto Y, Kamiya Y. 1985. Synergistic inhibition of oxidation of soybean phosphatidycholine liposomes in aqueous dispersion by vitamin E and vitamin C. Bull Chem Soc Jpn 58:1971–1975.

    Article  CAS  Google Scholar 

  29. Jacob RF, Mason RP. 2005. Lipid peroxidation induces cholesterol domain formation in model membranes. J Biol Chem 280:39380–39387.

    PubMed  Google Scholar 

  30. MacDonald RC, MacDonald RI, Menco BP, Takeshita K, Subbarao NK, Hu LR. 1991. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta 1061:297–303.

    PubMed  Google Scholar 

  31. Batzri S, Korn ED. 1973. Single bilayer liposomes prepared without sonication. Biochim Biophys Acta 298:1015–1019.

    Article  PubMed  CAS  Google Scholar 

  32. Domazou AS, Luisi PL. 2002. Size distribution of spontaneously formed liposomes by the alcohol injection method. J Liposome Res 12:205–220.

    Article  PubMed  CAS  Google Scholar 

  33. Hanlon MC, Seybert DW. 1997. The pH dependence of lipid peroxidation using water-soluble azoinitiators. Free Radical Biol Med 23:712–719.

    Article  CAS  Google Scholar 

  34. von Sonntag C. 1987. The Chemical Basis of Radiation Biology. Taylor & Francis: New York.

    Google Scholar 

  35. Alfassi ZB. 1999. S-Centered Radicals. Wiley: Chichester.

    Google Scholar 

  36. Ferreri C, Pierotti S, Barbieri A, Zambonin L, Landi L, Rasi S, Luisi PL, Barigelletti F, Chatgilialoglu C. 2006. Comparison of phosphatidylcholine vesicle properties related to geometrical isomerism. Photochem Photobiol 82:274–280.

    Article  PubMed  CAS  Google Scholar 

  37. Ferreri C, Samadi A, Sassatelli F, Landi L, Chatgilialoglu C. 2004. Regioselective cis-trans isomerization of arachidonic double bonds by thiyl radicals: the influence of phospholipid supramolecular organization. J Am Chem Soc 126:1063–1072.

    Article  PubMed  CAS  Google Scholar 

  38. Ihara H, Hashizuma N, Hemmi H, Yoshida M. 2000. Antioxidant ability of bilirubin, vitamin E, vitamin C and albumin in the peroxyl-radical-induced hemolysis of human erythrocytes. J Anal Biosci 23:425–430.

    CAS  Google Scholar 

  39. Ferreri C, Chatgilialoglu C, Torreggiani A, Salzano AM, Renzone G, Scaloni A. 2008. The reductive desulfurization of Met and Cys residues in bovine RNase A is associated with trans lipids formation in a mimetic model of biological membranes. J Prot Res 7:2007–2015.

    Article  CAS  Google Scholar 

  40. Kadlcik V, Sicard-Roselli C, Houée-Levin C, Ferreri C, Chatgilialoglu C. 2006. Reductive modification of methionine residue in amyloid β-peptide. Angew Chem Int Ed 45:2595–2598.

    Article  CAS  Google Scholar 

  41. Ferreri C, Faraone Mennella MR, Formisano C, Landi L, Chatgilialoglu C. 2002. Arachidonate geometrical isomers generated by thiyl radicals: the relationship with trans lipids detected in biological samples. Free Radical Biol Med 33:1516–1526.

    Article  CAS  Google Scholar 

  42. Ferreri C, Angelini F, Chatgilialoglu C, Dellonte S, Moschese V, Rossi P, Chini L. 2005. Trans fatty acids and atopic eczema/dermatitis syndrome: the relationship with a free radical cis.trans isomerization of membrane lipids. Lipids 40:661–667.

    Article  PubMed  CAS  Google Scholar 

  43. Puca AA, Novelli V, Viviani C, Andrew P, Somalvico F, Cirillo NA, Chatgilialoglu C, Ferreri C. 2008. Lipid profile of erythrocyte membranes as possible biomarker of longevity. Rejuven Res 11:63–72.

    Article  CAS  Google Scholar 

  44. Wilson R, Sargent JR. 2001. Chain separation of monounsaturated fatty acid methyl esters by argentation thin-layer chromatography. J Chromat A 905:251–257.

    Article  CAS  Google Scholar 

  45. Dobson G, Christie WW, Nikolova-Damyanova B. 1995. Silver ion chromatography of lipids and fatty acids. J Chromat B 671:197–222.

    Article  CAS  Google Scholar 

  46. Morris LJ. 1966. Separation of lipids by silver ion chromatography. J Lipid Res 7:717–732.

    PubMed  CAS  Google Scholar 

  47. Rouser G, Fkeischer S, Yamamoto A. 1970. Two dimensional thin layer chromatographic separation of polar lipids and determination phospholipids by phosphorus analysis of spots. Lipids 5: 494–496.

    Article  PubMed  CAS  Google Scholar 

  48. Griffiths WJ. 2003. Tandem mass spectrometry in the study of fatty acids, bile acids, and steroids. Mass Spectrom Rev 22:81–152.

    Article  PubMed  CAS  Google Scholar 

  49. Han X, Gross RW. 2003. Global analysis of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry. A bridge to lipidomics. J Lipid Res 44:1071–1079.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank all collaborators that helped to develop methodologies in an interdisciplinary context. Support and sponsorship of the COST Action CM0603 “Free Radicals in Chemical Biology” is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ferreri, C., Chatgilialoglu, C. (2009). Membrane Lipidomics and the Geometry of Unsaturated Fatty Acids From Biomimetic Models to Biological Consequences. In: Armstrong, D. (eds) Lipidomics. Methods in Molecular Biology, vol 579. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-322-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-322-0_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-321-3

  • Online ISBN: 978-1-60761-322-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics