Skip to main content

Computational Modeling of Signaling Networks for Eukaryotic Chemosensing

  • Protocol
  • First Online:
Chemotaxis

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 571))

Summary

The task of developing and simulating computational models of signaling networks for eukaryotic chemosensing confronts the modeler with several challenges: (1) The stimuli that initiate the cellular responses one wishes to study are provided by extracellular concentration gradients. This means that the computational model must have a spatially resolved representation of extracellular molecular concentrations. (2) The intracellular responses consist of the generation of intracellular accumulations and/or translocations of signaling molecules, requiring spatially resolved computational representations of the simulated cells. (3) The signaling networks responsible for eukaryotic chemosensing comprise a multitude of components acting as receptors, adaptors, (lipid- and protein-) kinases (including GTPases), (lipid- and protein-) phosphatases, and molecule types used by others for membrane attachment. Models of such signaling networks may become quite complicated, unless one wishes to rely on abstract functional modules with certain input–output characteristics as modeling “shortcuts” replacing subnetworks of biological signaling molecules. In this chapter, we describe how modelers can use a modeling tool (“simmune”) developed to facilitate the design and simulation of detailed computational models of signaling pathways (for eukaryotic chemosensing here), thereby avoiding the technical difficulties typically associated with building and simulating such quantitative models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parent, C. A. and Devreotes, P. N. (1999) A cell’s sense of direction. Science 284, 765–770

    Article  PubMed  CAS  Google Scholar 

  2. Merlot, S. and Firtel, R. A. (2003) Leading the way: directional sensing through phosphatidylinositol 3-kinase and other signaling pathways. J. Cell Sci. 116, 3471–3478

    Article  PubMed  CAS  Google Scholar 

  3. Van Haastert, P. J. and Devreotes, P. N. (2004) Chemotaxis: signalling the way forward. Nat. Rev. Mol. Cell Biol. 5, 626–634

    Article  PubMed  CAS  Google Scholar 

  4. Sasaki, A. T., Chun, C., Takeda, K., and Firtel, R. A. (2004) Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement. J. Cell Biol. 167, 505–518

    Article  PubMed  CAS  Google Scholar 

  5. Iijima, M., Huang, Y. E., and Devreotes, P. (2002) Temporal and spatial regulation of chemotaxis. Dev. Cell 3, 469–478

    Article  PubMed  CAS  Google Scholar 

  6. Funamoto, S., Meili, R., Lee, S., Parry, L., and Firtel, R. A. (2002) Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109, 611–623

    Article  PubMed  CAS  Google Scholar 

  7. Meinhardt, H. (1999) Orientation of chemotactic cells and growth cones: models and mechanisms. J. Cell Sci. 112(Pt 17), 2867–2874

    PubMed  CAS  Google Scholar 

  8. Iglesias, P. A. and Levchenko, A. (2002) Modeling the cell’s guidance system. Sci. STKE 2002, RE12

    Article  PubMed  Google Scholar 

  9. Ma, L., Janetopoulos, C., Yang, L., Devreotes, P. N., and Iglesias, P. A. (2004) Two complementary, local excitation, global inhibition mechanisms acting in parallel can explain the chemoattractant-induced regulation of PI(3,4,5)P3 response in Dictyostelium cells. Biophys. J. 87, 3764–3774

    Article  PubMed  CAS  Google Scholar 

  10. Skupsky, R., Losert, W., and Nossal, R. J. (2005) Distinguishing modes of eukaryotic gradient sensing. Biophys. J. 89, 2806–2823

    Article  PubMed  CAS  Google Scholar 

  11. Meier-Schellersheim, M., Xu, X., Angermann, B., Kunkel, E. J., Jin, T., and Germain, R. N. (2006) Key role of local regulation in chemosensing revealed by a new molecular interaction-based modeling method. PLoS Comput. Biol. 2, e82

    Article  PubMed  Google Scholar 

  12. Xu, X., Meier-Schellersheim, M., Jiao, X., Nelson, L. E., and Jin, T. (2005) Quantitative imaging of single live cells reveals spatiotemporal dynamics of multistep signaling events of chemoattractant gradient sensing in Dictyostelium. Mol. Biol. Cell 16, 676–688

    Article  PubMed  CAS  Google Scholar 

  13. Xu, X., Meier-Schellersheim, M., Yan, J., and Jin, T. (2007) Locally controlled inhibitory mechanisms are involved in eukaryotic GPCR-mediated chemosensing. J. Cell Biol. 178, 141–153

    Article  PubMed  CAS  Google Scholar 

  14. Slepchenko, B. M., Schaff, J. C., Macara, I., and Loew, L. M. (2003) Quantitative cell biology with the virtual cell. Trends Cell Biol. 13, 570–576

    Article  PubMed  CAS  Google Scholar 

  15. Blinov, M. L., Faeder, J. R., Goldstein, B., and Hlavacek, W. S. (2004) BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20, 3289–3291

    Article  PubMed  CAS  Google Scholar 

  16. McConnachie, G., Pass, I., Walker, S. M., and Downes, C. P. (2003) Interfacial kinetic analysis of the tumour suppressor phosphatase, PTEN: evidence for activation by anionic phospholipids. Biochem. J. 371, 947–955

    Article  PubMed  CAS  Google Scholar 

  17. Howell, B. W. and Cooper, J. A. (1994) Csk suppression of Src involves movement of Csk to sites of Src activity. Mol. Cell Biol. 14, 5402–5411

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Intramural Research Program of the National Institutes of Health, National Institute of Allergy and Infectious Diseases. The authors thank Dr. Dale Hereld and Dr. Tian Jin for helpful comments.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press

About this protocol

Cite this protocol

Meier-Schellersheim, M., Klauschen, F., Angermann, B. (2009). Computational Modeling of Signaling Networks for Eukaryotic Chemosensing. In: Jin, T., Hereld, D. (eds) Chemotaxis. Methods in Molecular Biology™, vol 571. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-198-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-198-1_33

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-197-4

  • Online ISBN: 978-1-60761-198-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics