Skip to main content

CMS and Type 2 Diabetes Mellitus: Bound Together by the Renin Angiotensin Aldosterone System

  • Chapter
  • First Online:
Renin Angiotensin System and Cardiovascular Disease

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1005 Accesses

Abstract

The recent epidemic of obesity has led to an increasing incidence of the cardiometabolic syndrome defined by the NCEP ATP III guidelines as a cluster of abdominal obesity, low HDL, high triglycerides, HTN, and impaired fasting glucose. Obesity predisposes the body to a state of inflammation, insulin resistance, and hyperinsulinemia, and individuals with the metabolic syndrome are at increased risk for developing CAD, stroke, PVD, CKD, and T2DM. There are various mechanisms by which these complications of the metabolic syndrome occur, and activation of systemic and local renin angiotensin aldosterone system (RAAS) and resultant oxidative stress in different organ systems is probably the most important one. Finally, based on recent trials, the approach toward management of the metabolic syndrome is usually multifactorial and multiagent and studies are still being performed to assess the efficacy of newer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Heart Association (2008). Metabolic syndrome. http://www.americanheart.org/presenter.jhtml?identifier=3063528/

  2. Leung, P., and Carlsson, P. (2001) Tissue renin angiotensin system: its expression, localization, regulation and potential role in the pancreas. J Mol Endocrinol 26, 155–164.

    CAS  PubMed  Google Scholar 

  3. Campbell, D.J. (1987) Circulating and tissue angiotensin systems. J Clin Invest 79, 1–6.

    CAS  PubMed  Google Scholar 

  4. Licata G., Scaglione R., Ganguzza, A., and Central Obesity and Hypertension. (1994) Relationship between fasting serum insulin, plasma renin activity, and diastolic blood pressure in young obese subjects. Am J Hypertens 7, 314–320.

    CAS  PubMed  Google Scholar 

  5. Ran, J., Hirano, T., and Adachi, M. (2004) Angiotensin II type 1 receptor b locker ameliorates overproduction and accumulation of triglyceride in the liver of Zucker fatty rats. Am J Physiol Endocrinol Metab 287, E227–E232.

    CAS  PubMed  Google Scholar 

  6. Vidotti, D.B., Casarinin, D.E., Cristovam, P.C., et al. (2004) High glucose concentration stimulates renin activity and angiotensin II generation in mesangial cells. Am J Physiol Renal Physiol 286, F1039–F1045.

    CAS  PubMed  Google Scholar 

  7. Pickup, J.C. (2004) Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 27, 813–823.

    PubMed  Google Scholar 

  8. Bays, H., Mandarino, L., and De Fronzo, R. (2004) Role of the adipocyte, free fatty acids and ectopic fat in the pathogenesis of type 2 diabetes mellitus: Peroxisomal proliferators-activated receptor agonists provide a rationale therapeutic approach. J Clin Endocrinol Metab 89, 463–478.

    CAS  PubMed  Google Scholar 

  9. Pittas, A.G., Joseph, N.A., and Greenberg, A.S. (2004) Hot topic: Adipocitokines and insulin resistance. J Clin Endocrinol Metab 89(2), 447–452.

    CAS  PubMed  Google Scholar 

  10. Rajala, M.W., Obici, S., Scherer, P.E, et al. (2003) Adipose derived resistin and gut-derived resistin resistin-like molecule-β selectively impair insulin action on glucose production. J Clin Invest 111, 225–230.

    CAS  PubMed  Google Scholar 

  11. Landry, D.B., Couper, L.L., and Lindner, V. (1997) Activation of the NF- κΒ and IκΒ system in smooth muscle cells after rat arterial injury. Induction of vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1. Am J Pathol 151, 1085–1095.

    CAS  PubMed  Google Scholar 

  12. Frostegard, J., Ulfgren, A.K., Nyber, P., et al. (1999) Cytokine expression in advanced human atherosclerotic plaques: dominance of proinflammatory (Th1) and macrophage stimulating cytokines. Atherosclerosis 145, 33–43.

    CAS  PubMed  Google Scholar 

  13. Hotamisligil, G.S., and Spiegelman, B.M. (1993) Tumor necrosis factor a: a key component of the obesity-diabetes link. Diabetes 43, 1271–1278.

    Google Scholar 

  14. Kershaw, E.E., and Flier, J.S. (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89, 2548–2556.

    CAS  PubMed  Google Scholar 

  15. Fernández-Real, J.M., and Ricart, W. (2003) Insulin resistance and chronic cardiovascular inflammatory syndrome. Endocr Rev 24, 278–301.

    PubMed  Google Scholar 

  16. Considine, R.V., Sinha, M.K., and Heimen M.L. (1996) Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 334, 292–295.

    CAS  PubMed  Google Scholar 

  17. Halaas, J.L., Gajiwala, K.S., Maffei, M., et al. (1995) Weight reducing effects of the plasma protein encoded by the obese gene. Science 296, 543–546.

    Google Scholar 

  18. Ahima, R.S., Prabakaran, D., and Matanzoros, C. (1996) Role of leptin in neuroendocrine response to fasting. Nature 382, 250–252.

    CAS  PubMed  Google Scholar 

  19. Pelleymounter, M.A., Cullen, M.J., and Baker, M.B. (1995) Effects of the obese gene product on body weight regulation in Ob/Ob mice. Science 269, 540–543.

    CAS  PubMed  Google Scholar 

  20. Minokoshi, Y., Kim, Y.B., Peroni, O.D. et al. (2002) Leptin stimulates fatty-acid oxidation by activating AMP activated protein kinase. Nature 415, 339–343.

    CAS  PubMed  Google Scholar 

  21. Minokoshi, Y., and Kahn, B.B. (2003) Role of AMP-activated protein kinase in leptin-induced fatty acid oxidation in muscle. Biochem Soc Trans 31, 196–201.

    CAS  PubMed  Google Scholar 

  22. Rajala, M.W., and Scherer, P.E. (2003) Minireview: The adipocyte:-At the crossroads of energy homeostasis, inflammation and atherosclerosis. Endocrinology 144, 3675–3773.

    Google Scholar 

  23. Hardie, D.G. (2004) The AMP-activated protein kinase pathway – New players upstream and downstream. J Cell Sci 117, 5.

    Google Scholar 

  24. Goldstein, B.J., Scalia, R.(2004) Adiponectin: A novel Adipokine linking adipocytes and vascular function. J Clin Endocrinol Metab 89, 2563–2568.

    CAS  PubMed  Google Scholar 

  25. Ouchi, N., Ohishi, M., Kihara, S. et al. (2003) Association of hypoadiponectinemia with impaired vasoreactivity. J Hypertens 42, 231–234.

    CAS  Google Scholar 

  26. Hayden, M.R. (2004) Global risk reduction of reactive oxygen species in metabolic syndrome, type 2 diabetes mellitus, and atheroscleropathy. Med Hypotheses Res 1, 171–185.

    Google Scholar 

  27. Nickenig, G., Roling, J., Strehlow K., et al. (1998) Insulin induces upregulation of vascular AT1 receptor gene expression by posttranscriptional mechanisms. Circulation 98, 2453–2460.

    CAS  PubMed  Google Scholar 

  28. Hayden, M.R., and Sowers, J.R. (2006) Hypertension in type 2 diabetes mellitus. Insulin 1(1), 22–37.

    Google Scholar 

  29. Reaven, G.M., Lithell, H., and Landsberg, L. (1996) Hypertension and associated metabolic abnormalities—the role of insulin resistance and the sympathoadrenal system. N Engl J Med 334, 374–381.

    CAS  PubMed  Google Scholar 

  30. Skarfors, E.T., Lithell, H.O., and Selinus, I. (1991) Risk factors for the development of hypertension: a 10-year longitudinal study in middle-aged men. J Hypertens 9, 217–223.

    CAS  PubMed  Google Scholar 

  31. Lissner, L., Bengtsson, C., Lapidus, L., et al. (1992) Fasting insulin in relation to subsequent blood pressure changes and hypertension in women. Hypertension 20, 797–801.

    CAS  PubMed  Google Scholar 

  32. Taittonen, L., Uhari, M., Nuutinen, M., et al. (1996) Insulin and blood pressure among healthy children. Am J Hypertens 9, 193–199.

    Google Scholar 

  33. Zavaroni, I., Bonini, L., Gasparini, P., et al. (1999) Hyperinsulinemia in a normal population as a predictor of non-insulin-dependent diabetes mellitus, hypertension, and coronary heart disease: the Barilla factory revisited. Metabolism 48, 989–994.

    CAS  PubMed  Google Scholar 

  34. Sicree, R.A., Zimmet, P.Z., King, H.O.M., et al. (1987) Plasma insulin response among Nauruans: prediction of deterioration in glucose tolerance over 6 years. Diabetes 36, 179–186.

    CAS  PubMed  Google Scholar 

  35. Haffner, S.M., Stern, M.P., Mitchell, B.D., et al. (1990) Incidence of type II diabetes in Mexican Americans predicted by fasting insulin and glucose levels, obesity and body-fat distribution. Diabetes 39, 283–288.

    CAS  PubMed  Google Scholar 

  36. Warram, J.H., Martin, B.C., Krolewski, A.S., et al. (1990) Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of the diabetic parents. Ann Intern Med 113, 909–915.

    CAS  PubMed  Google Scholar 

  37. Lillioja, S., Mott, D.M., Spraul, M., et al. (1993) Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. N Engl J Med 329, 1988–1992.

    CAS  PubMed  Google Scholar 

  38. Canoy, D., Luben, R., Welch, A., et al. (2004) Fat distribution, body mass index and blood pressure in 22,090 men and women in the Norfolk cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Norfolk) study. J Hypertens 22(11), 2067–2074.

    CAS  PubMed  Google Scholar 

  39. Cooper, R., McFarlane-Anderson, N., Bennett F.I., et al. (1997) ACE, angiotensinogen and obesity: a potential pathway leading to hypertension. J Hum Hypertens 11(2), 107–111.

    CAS  PubMed  Google Scholar 

  40. Kurukulasuriya, L.R., Stas, S., Lastra G, et al. (2008) Hypertension in obesity. Endocrinol Metab Clin N Am 37, 647–662.

    CAS  Google Scholar 

  41. Sowers, J. (2004) Insulin resistance and hypertension. Am J Physiol Heart Circ Physiol 286, H1597–1602.

    CAS  PubMed  Google Scholar 

  42. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. (2003) Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 26(Suppl 1), S5–20.

    Google Scholar 

  43. McFarlane, S., Banerji, M., and Sowers, J. (2001) Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults. JAMA 285, 2486–2497.

    Google Scholar 

  44. McFarlane, S.I., Banerji, M., and Sowers, J.R. (2001) Insulin resistance and cardiovascular disease. J Clin Endocrinol Metab 86, 713–718.

    CAS  PubMed  Google Scholar 

  45. Karuparthi, P.R., Yerram, P., Lastra, G., et al. (2007) Understanding essential hypertension from the perspective of the cardiometabolic syndrome. J Am Soc Hypertens 1(2), 120–134.

    PubMed  Google Scholar 

  46. Babior, B.M. (2004) NADPH oxidase. Curr Opin Immunol 16(1), 42–47.

    CAS  PubMed  Google Scholar 

  47. Umeki, S. (1994) Mechanisms for the activation/electron transfer of neutrophil NADPH-oxidase complex and molecular pathology of chronic granulomatous disease. Ann Hematol 68(6), 267–277.

    CAS  PubMed  Google Scholar 

  48. Zuo, L., Ushio-Fukai, M., Hilenski, L.L., et al. (2004) Microtubules regulate angiotensin II type 1 receptor and Rac1 localization in caveolae/lipid rafts: role in redox signaling. Arterioscler Thromb Vasc Biol 24, 1223–1228.

    CAS  PubMed  Google Scholar 

  49. Zuo, L., Ushio-Fukai, M., Ikeda, S., et al. (2005) Caveolin 1 is essential for activation of Rac-1 and NADPH oxidase after angiotensin II Type 1 receptor stimulation in vascular smooth muscle cells: role in redox signaling and vascular hypertrophy. Arterioscler Thromb Vasc Biol 25, 1824–1830.

    CAS  PubMed  Google Scholar 

  50. Pueyo, M.E., Gonzalez, W., Nicoletti, A., et al. (2000) Angiotensin II stimulates endothelial vascular cell adhesion molecule – 1 via nuclear factor B activation induced by intracellular oxidative stress. Arterioscler Thromb Vasc Biol 20, 645–654.

    CAS  PubMed  Google Scholar 

  51. Berry, C., Touyz, R., Dominiczak, A.F., et al. (2001) Angiotensin receptors: signaling, vascular pathophysiology, and interactions with ceramide. Am J Physiol Heart Circ Physiol 281, H2337–H2365.

    CAS  PubMed  Google Scholar 

  52. Aneja, A., El-Atat, F., McFarlane, S.I., et al. (2004) Hypertension and obesity. Recent Prog Horm Res 59, 169–205.

    CAS  PubMed  Google Scholar 

  53. Sowers, J.R., and Frolich, E.D. (2004) Insulin and insulin resistance: impact on blood pressure and cardiovascular disease. Med Clin North Am 88, 63–82.

    CAS  PubMed  Google Scholar 

  54. Muniyappa, R., Montagnani, M., Koh, K.K., et al. (2007) Cardiovascular actions of insulin. Endocr Rev 28, 463–491.

    CAS  PubMed  Google Scholar 

  55. Sowers, J.R. (1997) Insulin and insulin-like growth factor in normal and pathological cardiovascular physiology. Hypertension 29, 691–699.

    CAS  PubMed  Google Scholar 

  56. Sowers, J.R. (2002) Hypertension, angiotensin II, and oxidative stress. N Engl J Med 346, 1999–2001.

    PubMed  Google Scholar 

  57. Standley, P.R., Zhang, F., Ram, J.L., et al. (1991) Insulin attenuates vasopressin-induced calcium transients and a voltage-dependent calcium response in rat vascular smooth muscle cells. J Clin Invest 88, 1230–1236.

    CAS  PubMed  Google Scholar 

  58. Cooper, S.A., Whaley-Connell, A., Sowers, J.R., et al. (2007) Renin-angiotensin-aldosterone system and oxidative stress in cardiovascular insulin resistance. Am J Physiol Heart Circ Physiol 293, H2009–H2023.

    CAS  PubMed  Google Scholar 

  59. Manrique, C., Lastra, G., Whaley-Connell, A., et al. (2005) Hypertension and the cardiometabolic syndrome. J Clin Hypertens 7, 471–476.

    Google Scholar 

  60. Peterson, R.C., and Dunlap, M.E. (2007) Angiotensin II receptor blockers in heart failure. CHF 8(5), 246–256.

    Google Scholar 

  61. Vincent, D., Ilany, J., Kondo, T., et al. (2003) The role of endothelial insulin signaling in the regulation of vascular tone and insulin resistance. J Clin Invest 111, 1373–1380.

    Google Scholar 

  62. Febbraio, M., Hajjar, D.P., and Silverstein, R.L. (2001) CD36: A class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation and lipid metabolism. J Clin Invest 108, 785–791.

    CAS  PubMed  Google Scholar 

  63. Chien-Ping, L., Seongah, H., Okamoto, H., et al. (2004) Increased CD 36 protein as a response to defective insulin signaling in macrophages. J Clin Invest 113, 764–773.

    Google Scholar 

  64. Febbraio, M., Podrez, E.A., Smith, J.D., et al. (2000) Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest 105, 1049–1056.

    CAS  PubMed  Google Scholar 

  65. Catalano, C., Muscelli, E., and Quinones G.A. (1997) Effect of insulin on systemic and renal handling of albumin in nondiabetic and NIDDM subjects. Diabetes 46, 868–875.

    CAS  PubMed  Google Scholar 

  66. Cohen, A.J., McCarthy, D.M., and Stoff, J.S. (1989) Direct hemodynamic effect of insulin in the isolated perfused kidney. Am J Physiol 257, 580–585.

    Google Scholar 

  67. Dengal, D.R., Goldberg, A.P., Mayuga, R.S., et al. (1996) Insulin resistance, elevated glomerular filtration and renal injury. Hypertension 28, 127–132.

    Google Scholar 

  68. Sowers, J.R., and Haffner, S. (2002) Treatment of cardiovascular and renal risk factors in the diabetic hypertensive. Hypertension 40, 781–788.

    CAS  PubMed  Google Scholar 

  69. Ritz, E., Rychlík, I., Locatelli, F., et al. (1999) End-stage renal failure in type 2 diabetes: a medical catastrophe of worldwide dimensions. Am J Kidney Dis 34, 795–808.

    CAS  PubMed  Google Scholar 

  70. Gerstein, H.C., Mann, J.F.E., Yi, Q., et al. (2001) Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA 289, 421–426.

    Google Scholar 

  71. Reaven, G.M. (1988) Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37, 1595–1607.

    CAS  PubMed  Google Scholar 

  72. Keane, W.F., and Eknoyan, G. (1999) Proteinuria, albuminuria, risk, assessment, detection, elimination (PARADE): A position paper of the National Kidney Foundation. Am J Kidney Dis 33, 1004–1010.

    CAS  PubMed  Google Scholar 

  73. Lastra, G., Manrique, C., and Sowers, J.R. (2006) Obesity, cardiometabolic syndrome, and chronic kidney disease: the weight of the evidence. Adv Chronic Kidney Dis 13(4), 365–373.

    PubMed  Google Scholar 

  74. Abuaisha, B., Kumar, S., Malik, R., et al. (1998) Relationship of elevated urinary albumin excretion to components of metabolic syndrome in non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract 39(2), 93–99.

    CAS  PubMed  Google Scholar 

  75. Mangrum, A., and Bakris, G.L. (1997) Predictors of renal and cardiovascular mortality in patients with non-insulin-dependent diabetes: a brief overview of microalbuminuria and insulin resistance. J Diabetes Complicat 11, 352–357.

    CAS  PubMed  Google Scholar 

  76. Leung, P.S., and Chappell, M.C. (2003) A local pancreatic renin-angiotensin system: endocrine and exocrine roles. Int J Biochem Cell Biol 35, 838–846.

    CAS  PubMed  Google Scholar 

  77. Tikellis, C., Wookey, P.J., Candido, R., et al. (2004) Improved islet morphology after blockade of the renin- angiotensin system in the ZDF rat. Diabetes 53, 989–997.

    CAS  PubMed  Google Scholar 

  78. Carlsson, P.O., Berne, C., and Jansson, L. (1998) Angiotensin II and the endocrine pancreas: effects on islet blood flow and insulin secretion in rats. Diabetologia 41, 127–133.

    CAS  PubMed  Google Scholar 

  79. Hayden, M.R., and Sowers, J.R. (2007) Isletopathy in type 2 diabetes: Implications of islet RAS, islet fibrosis, islet amyloid, remodeling, and oxidative stress. Antiox Redox Signal 9(7), 891–910.

    CAS  Google Scholar 

  80. Robertson, R.P., Harmon, J., Tran, P.O., et al. (2003) Glucose toxicity in B-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 52, 581–587.

    CAS  PubMed  Google Scholar 

  81. Habibi, J., Whaley-Connell, A., Hayden, M.R., et al. (2008) Renin inhibition attenuates insulin resistance, oxidative stress, and pancreatic remodeling in the transgenic Ren2 rat. Endocrinology 149, 5643–5653.

    CAS  PubMed  Google Scholar 

  82. Krauss, S., Zhang, C.Y., Scorrano, L., et al. (2003) Superoxide-mediated activation of uncoupling protein 2 causes pancreatic beta cell dysfunction. J Clin Invest 112, 1831–1842.

    CAS  PubMed  Google Scholar 

  83. Echtay, K.S., Roussel, D., St-Pierre, J., et al. (2002) Superoxide activates mitochondrial uncoupling proteins. Nature 415, 96–99.

    CAS  PubMed  Google Scholar 

  84. Kaneto, H., Nakatani, Y., Kawamori, D., et al. (2005) Role of oxidative stress, endoplasmic reticulum stress, and c-Jun-terminal kinase in pancreatic B-cell dysfunction and insulin resistance. Int J Biochem Cell Biol 37, 1595–1608.

    CAS  PubMed  Google Scholar 

  85. Ozcan, U., Cao, Q., Yilmaz, E., et al. (2005) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457–461.

    Google Scholar 

  86. Chappell, M.C., Diz, D.L., and Gallagher, P.E. (2001) The renin-angiotensin system and the exocrine pancreas. J Pancreas 2, 33–39.

    CAS  Google Scholar 

  87. Tsang, S.W., Cheng, C.H., and Leung, P.S. (2004) The role of pancreatic renin-angiotensin system in acinar digestive enzyme secretion and acute pancreatitis. Regul Pept 119, 213–219.

    CAS  PubMed  Google Scholar 

  88. Tzang, S.W., Ip, S.P., Wong, T.P., et al. (2003) Differential effects of saralasin and ramaprilat, the inhibitors of renin-angiotensin system, on cerulean-induced acute pancreatitis. Regul Pep 111, 47–53.

    Google Scholar 

  89. Kuno, A., Yamada, T., Masuda, K. (2003) et al. Angiotensin-converting enzyme inhibitor attenuates pancreatic inflammation and fibrosis in male Wistar Bonn/Kobori rats. Gastrolentology 124, 1010–1019.

    CAS  Google Scholar 

  90. Rahuel, J., Rasetti, V., Maibaum, J., et al. (2000) Structural-based drug design: the discovery of novel nonpeptide orally active inhibitors of human renin. Chem Biol 7, 493–504.

    CAS  PubMed  Google Scholar 

  91. Cooper, M.E. (2004) The role of the renin-angiotensin-aldosterone system in diabetes and its vascular complications. Am J Hypertens 17(11 Pt 2), 16S–20S.

    CAS  PubMed  Google Scholar 

  92. Hotamisligil, G.S., Shargill, N.S., and Spiegelman, B.M. (1993) Adipose expression of tumor necrosis factor a: direct role in obesity-linked insulin resistance. Science. 259, 87–91.

    CAS  PubMed  Google Scholar 

  93. Decode study group; on behalf of the European Diabetes Epidemiology group. (2001) Glucose tolerance and cardiovascular mortality: comparison of fasting and 2-hr diagnostic criteria. Arch Intern Med 161(3), 397–405.

    Google Scholar 

  94. Coutinho, M., Gerstein, H.C., Wang, Y., et al. (1999) The relationship between glucose and incident cardiovascular events: a metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care 22(2), 233–240.

    CAS  PubMed  Google Scholar 

  95. Lastra, G., Manrique, C., Govindarajan, G., et al. (2005) Insights into the emerging cardiometabolic prevention and management of diabetes mellitus. Expert Opin Pharmacother 6(13), 2209–2221.

    Google Scholar 

  96. Hansson, L., Zanchetti, A., Carruthers, S.G., et al. (1998) Effects of intensive blood-pressure lowering and low dose aspirin in patients with hypertension: principal results of the hypertension optimal treatment (Hot) randomized trial. Lancet 351 (9118), 1755–1762.

    CAS  PubMed  Google Scholar 

  97. UK Prospective Diabetes Study (UKPDS) Group. (1998) Intensive blood-glucose control with sulfonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352(9131), 837–853.

    Google Scholar 

  98. Heart Protection Study Collaborative Group. (2002) Heart Protection Study of cholesterol lowering with simvastatin in 20536 high-risk individuals: a randomized placebo-controlled trial. Lancet 360(9326), 7–22.

    Google Scholar 

  99. Hansson, L., Lindholm, L.H., Niskanen, L., et al. (1999) Effect of angiotensin-converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: the Captopril Prevention Project (CAPPP) randomized trial. Lancet 353(9153), 611–616.

    CAS  PubMed  Google Scholar 

  100. The Heart Outcomes Prevention Evaluation Study Investigators. (2000) Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med 342(3), 145–153.

    Google Scholar 

  101. The ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. (2002) Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). JAMA 288(23), 2981–2997.

    Google Scholar 

  102. The ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. (2000) Major cardiovascular events in hypertensive patients randomized to doxazosin vs chlorthalidone: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). JAMA 283(15), 1967–1975.

    Google Scholar 

  103. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. (1992) The SOLVD investigators. N Engl J Med 327(10), 685–691.

    Google Scholar 

  104. Dahlof, B., Devereux, R.B., Kjeldsen, S.E., et al. (2002) Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 359(9311), 995–1003.

    CAS  PubMed  Google Scholar 

  105. Mcmurray, J.J., Ostergren, J., Swedberg, K., et al. (2003) Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function taking angiotensin-converting enzyme inhibitors: the CHARM-Added trial. Lancet 362(9386), 767–771.

    CAS  PubMed  Google Scholar 

  106. Bangalore, S., Messerli, F.H., Potter, B. J, et al. (2006) Effect of ramipril on the incidence of diabetes. N Engl J Med 355(15), 1551–1562.

    Google Scholar 

  107. Vijayaraghavan, K., and Deedwania, P.C. (2005) The renin angiotensin system as a therapeutic target to prevent diabetes and its complications. Cardiol Clin 23(2), 165–183.

    PubMed  Google Scholar 

  108. Uchidaa, T., Shimizua, M., Sakaia, Y., et al. (2008) Effects of losartan on serum total and high–molecular weight adiponectin concentrations in hypertensive patients with metabolic syndrome. Metabolism 57, 1278–1285.

    Google Scholar 

  109. Pitt, B., Zannad, F., Remme, W., et al. (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med 341(10), 709–717.

    CAS  PubMed  Google Scholar 

  110. Heart Protection Study Collaborative Group. (2003) MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet 361, 2005–2016.

    Google Scholar 

  111. Colhoun, H.M., Betteridge, D.J., Durrington, P.N., et al. on behalf of the CARDS investigators. (2004) Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet 364, 685–696.

    CAS  PubMed  Google Scholar 

  112. Prisant, L.M. (2004) Clinical trials and lipid guidelines for type II diabetes. J Clin Pharmacol 44, 423–430.

    CAS  PubMed  Google Scholar 

  113. Wolffenbuttel, B.H.R., Franken, A.A.M., and Vincent, H.H., on behalf of the Dutch CORALL Study Group. (2005) Cholesterol-lowering effects of rosuvastatin compared with atorvastatin in patients with type 2 diabetes—CORALL study. J Intern Med 257, 531–539.

    CAS  PubMed  Google Scholar 

  114. Cannon, C.P., Braunwald, E., McCabe, C.H., et al. (2004) Pravastatin or atorvastatin evaluation and infection therapy–thrombolysis in myocardial infarction 22 investigators. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 350, 1495–1504.

    CAS  PubMed  Google Scholar 

  115. Guido, L., Manrique, C., and Sowers, J.R. (2006) High cardiovascular risk in patients with diabetes and the cardiometabolic syndrome: mandate for statin therapy. JCMS 1, 178–183.

    Google Scholar 

  116. El-Atat F.A., Stas, S.N., McFarlane, S.I., et al. (2004) The relationship between hyperinsulinemia, hypertension and progressive renal disease. J Am Soc Nephrol 15, 2816–2827.

    PubMed  Google Scholar 

  117. Klausen, K., Borch-Johnsen, K., Feldt-Rasmussen, B., et al. (2004) Very low levels of microalbuminuria are associated with increased risk of coronary heart disease and death independently of renal function, hypertension, and diabetes. Circulation 110, 32–35.

    CAS  PubMed  Google Scholar 

  118. Lakka, H.M., Laaksonen, D.E., Lakka, T.A., et al. (2002) The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 288, 2709–2716.

    PubMed  Google Scholar 

  119. McFarlane, S.I., Banerji, M., and Sowers, J.R. (2001) Insulin resistance and cardiovascular disease. J Clin Endocrinol Metab 86, 713–718.

    CAS  PubMed  Google Scholar 

  120. Chen, J., Muntner, P., Hamm, L.L., et al. (2003) Insulin resistance and risk of chronic kidney disease in nondiabetic US adults. J Am Soc Nephrol 14, 469–477.

    CAS  PubMed  Google Scholar 

  121. Blanco, S., Vaquero, M., Gómez-Guerrero, C., et al. (2005) Potential role of angiotensin-converting enzyme inhibitors and statins on early podocyte damage in a model of type 2 diabetes mellitus, obesity, and mild hypertension. J Hypertens 18, 557–565.

    CAS  Google Scholar 

  122. Park, Y.S., Guijarro, C., Kim, Y., et al. (1998) Lovastatin reduces glomerular macrophage influx and expression of monocyte chemoattractant protein-1 mRNA in nephrotic rats. Am J Kidney Dis 31, 190–194.

    CAS  PubMed  Google Scholar 

  123. Tonolo, G., Ciccarese, M., Brizzi, P., et al. (1997) Reduction of albumin excretion rate in normotensive microalbuminuric type 2 diabetic patients during long-term simvastatin treatment. Diabetes Care 20, 1891–1895.

    CAS  PubMed  Google Scholar 

  124. Sorof,J., Berne, C., Siewert-Delle, A., et al. (2006) Effect of rosuvastatin or atorvastatin on urinary albumin excretion and renal function in type 2 diabetic patients. (The URANUS Study). Diabetes Res Clin Pract 72, 81–87.

    CAS  PubMed  Google Scholar 

  125. Keane, W.F. (2000) The role of lipids in renal disease: future challenges. Kidney Int Suppl 75, S27–S31.

    CAS  PubMed  Google Scholar 

  126. Grone, H.J., Walli, A.K., Grone, E., et al. (1990) Receptor mediated uptake of apo B and apo E rich lipoproteins by human glomerular epithelial cells. Kidney Int 37, 1449–1459.

    CAS  PubMed  Google Scholar 

  127. Lastra, G., Whaley-Connell, A., Manrique, C., et al. (2008) Low-dose spironolactone reduces reactive oxygen species generation and improves insulin-stimulated glucose transport in skeletal muscle in the TG(mRen2)27 rat. Am J Physiol Endocrinol Metab 295, E110–E116.

    CAS  PubMed  Google Scholar 

  128. Catena, C., Lapenna, R., Baroselli, S., et al. (2006) Insulin sensitivity in patients with primary aldosteronism: a follow-up study. J Clin Endocrinol Metab 91(9), 3457–3463.

    CAS  PubMed  Google Scholar 

  129. Fallo, F., Veglio, F., Bertello, C., et al. (2006) Prevalence and characteristics of the metabolic syndrome in primary aldosteronism. J Clin Endocrinol Metab 91(2), 454–459.

    CAS  PubMed  Google Scholar 

  130. Lastra, G., Whaley-Connell, A., Sowers, J., et al. (2008) Low-dose spironolactone reduces reactive oxygen species generation and improves insulin-stimulated glucose transport in skeletal muscle in the TG(mRen2)27 rat. Am J Physiol Endocrinol Metab 295, E110–E116

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepashree Gupta MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gupta, D., Lastra, G., Manrique, C., Sowers, J.R. (2009). CMS and Type 2 Diabetes Mellitus: Bound Together by the Renin Angiotensin Aldosterone System. In: DeMello, W., Frohlich, E. (eds) Renin Angiotensin System and Cardiovascular Disease. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-60761-186-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-186-8_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-185-1

  • Online ISBN: 978-1-60761-186-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics