Skip to main content

The Role of Biotechnology in the Production of the Anticancer Compound Podophyllotox

  • Protocol
  • First Online:
Protocols for In Vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 547))

Summary

Podophyllotoxin is a plant-derived compound found in Podophyllum sp. that is used to produce semi-synthetic anticancer pharmaceuticals such as etoposide, teniposide, and etoposide phosphate. This chapter describes the role of biotechnology to produce podophyllotoxin and our attempts to domesticate Podophyllum peltatum L., also known as the American mayapple. The domestication research on mayapple included surveys of the natural population, identification of high yielding genotypes, propagation, cultivation, sustainable harvest procedures and the development of protocols for in vitro germplasm bank.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fukuda, Y., Namiki, M. and Osawa, T. (1985). Studies on anti-oxidative substances in sesame seed. Agric. Biol. Chem. 49, 301–306.

    CAS  Google Scholar 

  2. Figgitt, D.P., Denever, S.P., Dewick, P.M., Jackson, D.E. and Willians, P. (1989). Topoisomerase II: a potential target for novel antifungal agents. Biochem. Biophys. Res. Commun. 160, 257–262.

    Article  CAS  PubMed  Google Scholar 

  3. Bedir, E., Khan, I. and Moraes R.M. (2002). Bio-prospecting for podophyllotoxin. In: Janick, J., Whipkey, A. (Eds.) Trends in New Crops and New Uses, ASHS Press, Alexandria, pp. 545–549.

    Google Scholar 

  4. Loike, J.D. and Horwitz, S.B. (1976). Effects of podophyllotoxin and VP 16-213 on microtubule assembly in vitro and nucleoside transport in HeLa cells. Biochemistry 15, 5435–5442.

    Article  CAS  PubMed  Google Scholar 

  5. Loike, J.D., Brewer, C.F., Sternlicht, H., Gensler, W.J. and Horwitz, S.B. (1978). Structure-activity study of the inhibition of microtubules assembly in vitro by podophyllotoxin and its congeners. Cancer Res. 38, 2688–2693.

    CAS  PubMed  Google Scholar 

  6. Stahelin, H.F. and Wartburg, A.V. von (1991). The chemical and biological route from podophyllotoxin glucoside to etoposide. Cancer Res. 51, 5–15.

    CAS  PubMed  Google Scholar 

  7. Canel, C., Moraes, R.M., Dayan, F.E. and Ferreira, D. (2000). Molecules of interest “podophyllotoxin”. Phytochemistry 54, 115–120.

    Article  CAS  PubMed  Google Scholar 

  8. Liu, Y.Q., Yang, L. and Tian, X. (2007). Podophyllotoxin: current perspectives. Curr. Bioact. Compd. 3, 37–66.

    Article  CAS  Google Scholar 

  9. Kaplan, I.W. (1942). Condylomata acuminatum. New Orleans Med. Surg. J. 94, 388.

    Google Scholar 

  10. King, L.S. and Sullivan, M. (1946). The similarity of the effect of podophyllin and colchicine and their use in the treatment of condylomata acuminate. Science 104, 244–245.

    Article  CAS  Google Scholar 

  11. Loike, J.D. and Horwitz, S.B. (1976). Effect of VP 16-213 on the intracellular degradation of DNA in HeLa cells. Biochemistry 15, 5443–5448.

    Article  CAS  PubMed  Google Scholar 

  12. Horwtiz, S.B. and Loike, J.D. (1977). A comparison of the mechanism of action of VP 16-213 and podophyllotoxin. Lloydia 40, 82–89.

    Google Scholar 

  13. Minocha, A. and Long, B.H. (1984). Inhibition of the DNA catenation activity of type II topoisomerase by VP 16-213, VM – 26. Biochem. Biophys. Res. Commun.122, 165–170.

    Article  CAS  PubMed  Google Scholar 

  14. Hartmann, J.T. and Lipp, H.P. (2006). Camptothecin and podophyllotoxin derivatives. Drug Saf. 29, 209–230.

    Article  CAS  PubMed  Google Scholar 

  15. Hosoi, H., Lehara, T., Tsuchiya, K., Misawa, A., Miyaji, M., Yagyu, S., Koizumi, M., Nishimura, T., Tokiwa, K. and Iwai, N. (2007). Continuous remission in an infant with chest wall malignant rhabdoid tumor after relapse. J. Pediatr. Surg. 42, e9–e12.

    Article  PubMed  Google Scholar 

  16. Schacter, L. (1996). Etoposide phosphate: what, why, where, and how? Semin. Oncol. 6(Suppl 13), 1–7.

    Google Scholar 

  17. Gordaliza, M., Garcia, P.A., Miguel del Corral, J.M., Castro, M.A. and Gomez-Zurita, M.A. (2004). Podophyllotoxin: distribution, source, application and new cytotoxic derivatives. Toxicon 44, 441–459.

    Article  CAS  PubMed  Google Scholar 

  18. Ekimoto, H., Okamoto, K. and Maruyama, S. (1992). Preclinical characterization of NK611, a novel water-soluble etoposide analog. Ann. Oncol. 3(Suppl 1), 98.

    Google Scholar 

  19. Lee, K.H. (1999). Novel antitumor agents from higher plants. Med. Res. Rev. 19(6), 569–596.

    Article  CAS  PubMed  Google Scholar 

  20. Huang, T.S., Lee, C.C., Chao, Y., Shu, C.H., Chen, L.T., Chen, L.L., Chen, M.H., Yuan, C.C. and Whang-Peng, J. (1999). A novel podophyllotoxin-derived compound GL331 is more potent than its congener VP-16 in killing refractory cancer cells. Pharm. Res. 16(7), 997–1002.

    Article  CAS  PubMed  Google Scholar 

  21. Terada, T., Fujimoto, K., Nomura, M.A., Yamashita, J., Wierzba, K., Yamazaki, R., Shibata, J., Sugimoto, Y. and Yamada, Y. (1993). Antitumor agents. 3. Synthesis and bio-logical activity of 4β-alkyl derivatives containing hydroxy, amino, and amido groups of 4′-O-demethyl-4-desoxypodophyllotoxin as antitumor agents. J. Med. Chem. 36(12), 1689–1699.

    Article  CAS  PubMed  Google Scholar 

  22. Yoshida, M., Kobunai, T., Aoyagi, K., Saito, H., Utsugi, T., Wierzba, K. and Yamada, Y. (2000). Specific distribution of TOP-53 to the lung and lung-localized tumor is determined by its interaction with phospholipids. Clin. Cancer Res. 6(11), 4396–4401.

    CAS  PubMed  Google Scholar 

  23. Utsugi, T., Shibata, H., Kumio, S., Aoyagi, K., Wierzba, K., Kobunai, T., Terada, T., Oh-hara, T., Tsuruo, T. and Yamada, Y. (1996). Antitumor activity of a novel podophyllotoxin derivative (TOP-53) against lung cancer and lung metastatic cancer. Cancer Res. 56(12), 2809–2814.

    CAS  PubMed  Google Scholar 

  24. Kruczynski, A., Etievant, C., Perrin, D., Imbert, T., Colpaert, F. and Hill, B.T. (2000). Preclinical antitumour activity of F 11782, a novel dual catalytic inhibitor of topoisomerases. Br. J. Cancer 83(11), 1516–1524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jensen, L.H., Renodon-Corniere, A., Nitiss, K.C., Hill, B.T., Nitiss, J.L., Jensen, P.B. and Sehested, M. (2003). A dual mechanism of action of the anticancer agent F 11782 on human topoisomerase II. Biochem. Pharm. 66(4), 623–631.

    Article  CAS  PubMed  Google Scholar 

  26. Chen, S.W., Wang, Y.H., Jin, Y., Tian, X., Zeng, Y.T., Lou, D.Q. and Tu, Y.Q. (2007). Synthesis and anti-HIV 1 activities of novel podophyllotoxin derivatives. Bioorg. Med. Chem. Lett. 17, 2091–2095.

    Article  CAS  PubMed  Google Scholar 

  27. Pugh, N., Khan, I., Moraes, R.M. and Pasco, D. (2001). Podophyllotoxin lignans enhance IL-1 but suppress TNF – a mRNA expression in LPS – treated monocytes. Immunopharmacol. Immunotoxicol. 23, 83–95.

    Article  CAS  PubMed  Google Scholar 

  28. Leander, K. and Rosen, B. (1988). Medicinal use for podophyllotoxin. US Patent 4 (788), 216.

    Google Scholar 

  29. Bohlin, L. and Rosen, B. (1996). Podophyllotoxin derivatives: drug discovery and development. Drug Discover. Today 1, 343–351.

    Article  CAS  Google Scholar 

  30. Di , X., Liu, Y., Liu, Y., Yu, X., Xiao, H., Tian, X. and Gao, R. (2007). Synthesis and insectidal activities of pyridine ring derivatives of podophyllotoxin. Pestic. Biochem. Physiol. 89, 81–87.

    Article  CAS  Google Scholar 

  31. Oliva, A., Moraes, R.M., Watson, S.B., Duke, S.O. and Dayan, F.E. (2002). Aryltetralin lignans inhibit plant growth by affecting the formation of mitotic microtubular organizing centers. Pestic. Biochem. Physiol. 72, 45–54.

    Article  CAS  Google Scholar 

  32. Bush, E.J. and Jones, D.W. (1995). Asymmetric total synthesis of (−)-podophyllotoxin. J. Chem. Soc. Perkin Trans. 1, 151–155.

    Google Scholar 

  33. Hartwel, J.L. and Shear, M.J. (1947). Chemotherapy of cancer: class of compound under investigation and the active components of podophyllin Cancer Res. 7, 716.

    Google Scholar 

  34. Fransen, M.C.R. and Walton, M.J. (1999). Biotransformations. In: Walton, M.J., Brawn, D.E. (Eds.), Chemicals from Plants, Perspectives on Plant Secondary Products, Imperial College Press, London, pp. 277–325.

    Chapter  Google Scholar 

  35. Gordaliza, M., Castro, M.A, Miguel del Corral, J.M. and San Feliciano, A. (2000). Antitumor properties of podophyllotoxin and related compounds. Curr. Pharm. Des. 6, 1811–1839.

    Article  CAS  PubMed  Google Scholar 

  36. Petersen, M. and Alfermann, A.W. (2001). The production of cytotoxic lignans by plant cell cultures. Appl. Microbiol. Biotechnol. 55, 135–142.

    Article  CAS  PubMed  Google Scholar 

  37. Puricelli, L., Innocenti, G., Piacente, S., Caniato, R., Filippini, R. and Capelletti, E.M. (2002) Production of lignans by Haplophyllum patavinum in vivo and in vitro. Heterocycles 56, 607–612.

    Article  CAS  Google Scholar 

  38. Meijer, W. (1974). Podophyllum peltatum – mayapple a potential new cash-crop plant of Eastern North America. Econ. Bot. 28, 68–72.

    Article  CAS  Google Scholar 

  39. Jackson, D.E. and Dewick, P.M. (1984). Aryltetralin lignans from Podophyllum hexandrum and Podophyllum peltatum. Phytochemistry 23(5), 1147–1152.

    Article  CAS  Google Scholar 

  40. Bhadula, S.K., Singh, A., Lata, H., Kuniyal, C.P. and Purohit, A.N. (1996). Genetic resources of Podophyllum hexandrum Royle, an endangered medicinal species from Garhwal Himalaya, India. Int. Plant. Gen. Resour. Newslett. 106, 26–29.

    Google Scholar 

  41. Foster, S. (1993). Medicinal plant conservation and genetic resources: examples from the temperate northern hemisphere. Acta Hortic. 330, 67–73.

    Article  Google Scholar 

  42. Nadeem, M., Palni, L.M.S., Purohit, A.N., Pandey, H. and Nandi, S.K. (2000). Propagation and conservation of Podophyllum hexandrum Royle: an important medicinal herb. Biol. Conserv. 92, 121–129.

    Article  Google Scholar 

  43. Moraes, R.M., Burandt, C. Jr., Ganzera, M., Li, X., Khan, I. and Canel, C. (2000). The American mayapple revisited – Podophyllum peltatum – still a potential cash crop? Econ. Bot. 54, 471–476.

    Article  CAS  Google Scholar 

  44. Moraes, R.M., Momm, H.G., Silva, B., Maddox, V., Easson, G.L., Lata, H. and Ferreira, D. (2005). Geographic information system method for assessing chemo-diversity in medicinal plants. Planta Med. 71, 1157–1164.

    Article  CAS  PubMed  Google Scholar 

  45. Canel, C., Dayan, F.E., Ganzera, M., Khan, I.A., Rimando, A., Burandt, C.L. and Moraes, R.M. (2001). High yield of podophyllotoxin from leaves of Podophyllum peltatum by in situ conversion of podophyllotoxin 4-O-β-d-glucopyranoside. Planta Med. 67, 97–99.

    Article  CAS  PubMed  Google Scholar 

  46. Dayan, F., Kuhajek, J., Canel, C., Watson, S. and Moraes R. (2003). Podophyllum peltatum possesses a β-glucosidase with high substrate specificity for the aryltetralin lignan podophyllotoxin. Biochim. Biophys. Acta 1645(1–2), 157–163

    Article  Google Scholar 

  47. Jackson, D.E. and Dewick, P.M. (1985). Tumor-inhibitory aryltetralin lignans from Podophyllum pleianthum. Phytochemistry 24, 2407–2409.

    Article  CAS  Google Scholar 

  48. Moraes, R.M., Bedir, E., Barrett, H., Burandt, C., Canel, C. and Khan, I.A. (2002). Evaluation of Podophyllum peltatum accessions for podophyllotoxin production. Planta Med. 68, 341–344.

    Article  CAS  PubMed  Google Scholar 

  49. Maqbool, M., Cushman, K.E. and Moraes, R.M. (2004). Mayapple: a review of the literature from a horticultural perspective. Annual Report of the North Mississippi Research and Extension Center. Miss. Agric. For. Expt Sta. Info. Bull. 375, 313–319.

    Google Scholar 

  50. Cushman, K.E., Maqbool, M., Bedir, E., Lata, H., Khan, I.A. and Moraes, R.M. (2005). Growth and lignin content of American mayapple under increasing levels of shade. Hortic. Sci. 40, 60–63.

    CAS  Google Scholar 

  51. Cushman, K.E., Moraes, R.M., Gerard, P.D., Bedir, E., Silva, B. and Khan, I.A. (2006). Frequency and timing of leaf removal affect growth and podophyllotoxin content of Podophyllum peltatum in full sun. Planta 72, 824–829.

    CAS  Google Scholar 

  52. Giri, A. and Narasu, M.L. (2000). Production of podophyllotoxin from Podophyllum hexandrum: a potential natural product for clinically useful anticancer drugs. Cytotechnology 34, 17–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fuss, E. (2003). Lignans in plant cell and organ cultures: an overview. Phytochem. Rev. 2(3), 307–320.

    Article  CAS  Google Scholar 

  54. Wink, M., Alfermann, W., Franke, R., Wetterauer, B., Distl, M., Windhovel, J., Krohn, O., Fuss, E., Garden, H., Mohagheghzadeh Eildi, E. and Ripplinger, P. (2005). Sustainable bioproduction of phytochemicals by plant in vitro cultures: anticancer agents. Plant Genet. Resour. 3, 90–100.

    Article  CAS  Google Scholar 

  55. Guillon, S., Tremouillaux-Guiller, J., Pati, P.K., Rideau, M. and Gantet, P. (2006). Harnessing the potential of hairy roots: down of a new era. Trends Biotech. 24(9), 403–409.

    Article  CAS  Google Scholar 

  56. Kutney, J.P. (1999). Biotechnology and synthetic chemistry – routes to clinically important compounds. Pure Appl. Chem. 71, 1025–1032.

    Article  CAS  Google Scholar 

  57. Uden, W. van, Bos, J.A., Boeke, G.M., Woerdenbag, H.J. and Pras, N. (1997). The large-scale isolation of deoxypodophyllotoxin from rhizomes of Anthriscus sylvestris followed by its bioconversion into 5-vethoxypodophyllotoxin β-d-glucoside by cell cultures of Linum flavum. Nat. Prod. 60(4), 401–403.

    Article  Google Scholar 

  58. Kadakade, P.G. (1982). Growth and podophyllotoxin production in callus tissues of Podophyllum peltatum. Plant Sci. Lett. 25, 107–115.

    Article  Google Scholar 

  59. Uden, W. van, Pras, N., Visser, J.F. and Malingre, T.M. (1989). Detection and identification of podophyllotoxin produced by cell cultures derived from Podophyllum hexandrum Royle. Plant Cell Rep.8(3), 165–168.

    Article  PubMed  Google Scholar 

  60. Uden, W. van, Pras, N. and Malingre, T.M. (1990). The accumulation of podophyllotoxin β-d-glucosidase by cell suspension cultures derived from the conifer Callistris drummondii. Plant Cell Rep. 9, 257–260.

    Article  PubMed  Google Scholar 

  61. Uden, W. van, Pras, N., Homan, B. and Malingre, T.M. (1991). Improvement of the production of 5-methoxypodophyllotoxin using a new selected root culture of Linum flavum L. Plant Cell Tiss. Org. Cult. 27, 115–121.

    Article  Google Scholar 

  62. Konuklugil, B., Schmidt, R.J. and Alfermann, A.W. (1999). Accumulation of aryltetralin lactone lignans in cell suspension cultures of Linum nidiflorum. Planta Med. 65, 587–588.

    Article  CAS  PubMed  Google Scholar 

  63. Chattopadhyay, S., Srivastava, A.K., Bhojwani, S.S. and Bisaria, V.S. (2001). Development of suspension culture of Podophyllum hexandrum for the production of podophyllotoxin. Biotechnol. Lett. 23, 2063–2066.

    Article  CAS  Google Scholar 

  64. Chattopadhyay, S., Srivastava, A.K. and Bisaria, V.S. (2002). Optimization of culture parameters for production of podophyllotoxin in suspension culture of Podophyllum hexandrum. Appl. Biochem. Biotechnol. 102/103, 381–393.

    Article  Google Scholar 

  65. Chattopadhyay, S., Srivastava, A.K., Bhojwani, S.S. and Bisaria, V.S. (2002). Production of podophyllotoxin by plant cell cultures of Podophyllum hexandrum in bioreactor. J. Ferment. Bioeng. 93, 215–220.

    CAS  Google Scholar 

  66. Chattopadhyay, S., Bisaria, V.S. and Srivastava, A.K. (2003). Enhanced production of podophyllotoxin by Podophyllum hexandrum using in situ cell retention bioreactor. Biotechnol. Prog. 19, 1026–1028.

    Article  CAS  PubMed  Google Scholar 

  67. Pandey, H., Nandi, S.K., Chandra, B., Nadeem, M. and Palni, L.M.S. (2001). GA(3) induced flowering in Podophyllum hexandrum Royle: a rare alpine medicinal herb. Acta Physiol. Plant. 23, 467–474.

    Article  CAS  Google Scholar 

  68. Xia, Z.Q., Costa, M.A., Proctor, J., Davin, L.B. and Lewis, N.G. (2000). Dirigent-mediated podophyllotoxin biosynthesis in Linum flavum and Podophyllum peltatum. Phytochemistry 55, 537–549.

    Article  CAS  PubMed  Google Scholar 

  69. Molog, G., Empt, U., Kuhlmann, S., Uden, W. van, Pras, N., Alfermann, A. and Petersen, M. (2001). Deoxypodophyllotoxin 6-hydroxylase, a cytochrome P450 monooxygenase from cell cultures of Linum flavum involved in the biosynthesis of cytotoxic lignans. Planta 214(2), 288–294.

    Article  CAS  PubMed  Google Scholar 

  70. Hemmati, S., Schmidt, T. and Fuss, E. (2007). (+)-Pinoresinol/(−)-lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B. FEBS Lett. 581, 603–610.

    Article  CAS  PubMed  Google Scholar 

  71. Hemmati , S., Schneider, B., Schmidt, T.J., Federolf, K., Alfermann, A.W. and Fuss, E. (2007). Justicidin B 7-hydroxylase, a cytochrome P450 monooxygenase from cell cultures of Linum perenne Himmelszelt involved in the biosynthesis of diphyllin. Phytochemistry 68, 22–24.

    Article  Google Scholar 

  72. Oostdam, A., Mol, J.N.M. and van der Plas, L.H.W. (1993). Establishment of hairy root cultures of Linum flavum producing the lignan 5-methoxypodophyllotoxin. Plant Cell Rep. 12, 474–477.

    Article  CAS  PubMed  Google Scholar 

  73. Schmitt, J. and Petersen, M. (2002). Influence of methyl jasmonate and coniferyl alcohol on pinoresinol and matairesinol accumulation in a Forsythia intermedia suspension culture. Plant Cell Rep. 20, 885–889.

    Article  CAS  Google Scholar 

  74. Moraes, R.M., de Andrade, Z., Bedir, E., Dayan, F., Lata, H. and Khan, I. (2004). Arbuscular mycorrhiza improves acclimatization and increases lignan content of micropropagated mayapple (Podophyllum peltatum L.). Plant Sci. 166, 23–29.

    Article  CAS  Google Scholar 

  75. Bedir, E., Tellez, M., Lata, H., Khan, I., Cushman, K.E. and Moraes, R.M. (2006). Post-harvest and scale up extraction of American mayapple leaves for podophyllotoxin production. Ind. Crops Prod. 24, 3–7.

    Article  CAS  Google Scholar 

  76. Moraes-Cedeira, R.M., Burandt, C.L. Jr, Bastos, J.K., Nanayakkara, N.P.D. and McChesney, J.D. (1998) In vitro propagation of Podophyllum peltatum. Planta Med. 64, 42–46.

    Article  Google Scholar 

  77. Cousins, M.M. and Adelberg, J.W. (2007). In vitro plant and organ culture of medicinal and nutraceutical species in laboratory and industrial scales. ISHS Acta Hortic. 756, 95–102.

    Article  Google Scholar 

  78. Eyberger, A.L., Dondapati, R. and Porter, J.R. (2006). Endophyte fungal isolates from Podophyllum peltatum produces podophyllotoxin. J. Nat. Prod. 69(8), 1121–1124.

    Article  CAS  PubMed  Google Scholar 

  79. Puri, S.C., Nazir, A., Chawla, A., Arora, R., Riyaz-ul-Hasan, S., Amna, T., Ahmed, B., Verma, V., Singh, S., Sagar, R., Sharma, A., Kumar, R., Sharma, R.K. and Qazi, G.N. (2005). The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J. Biotechnol. 122, 494–510.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially funded by The University of Mississippi Office of Research and Sponsored Program and by USDA/ARS Specific Cooperative Research Agreement No. 58-6408-2-0009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita M. Moraes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lata, H., Mizuno, C., Moraes, R. (2009). The Role of Biotechnology in the Production of the Anticancer Compound Podophyllotox. In: Jain, S.M., Saxena, P.K. (eds) Protocols for In Vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants. Methods in Molecular Biology, vol 547. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-287-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-287-2_31

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-286-5

  • Online ISBN: 978-1-60327-287-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics