Skip to main content

Use of Biofilm Model Systems to Study Antimicrobial Susceptibility

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 642))

Abstract

There are many laboratory biofilm models available which can be used to assess the susceptibility of these distinctive resistant phenotypes. The complexities of these models vary considerably and indeed, the antimicrobial susceptibility of biofilms grown in these different models are also not standardised. It is clear that such methods are necessary for the testing of antibiotics and antimicrobial agents since these persistent communities are far more resistant than their planktonic counterparts. Therefore, it is now apparent that standardised tests such as MIC are no longer appropriate on their own to fully characterise susceptibility. There has also been a growing realisation that bacteria are growing as biofilms in almost every health-care setting and are, thus, a major contributing factor to the difficulty of treating infections. There is a pressing need for the models outlined in this chapter to test both current and novel anti-biofilm compounds and materials.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gould IM (1994) Risk factors for acquisition of multiply drug-resistant Gram-negative bacteria. Eur J Clin Microbiol Infect Dis 13:30–38

    Article  Google Scholar 

  2. Nisbet LJ (1982) Current strategies in the search for bioactive microbial metabolites. J Chem Technol Biotechnol 32:251–270

    Article  CAS  Google Scholar 

  3. Slocombe B (1994) The future of antibacterial chemotherapy. Zentralbl Bakteriol 281:346–352

    CAS  PubMed  Google Scholar 

  4. Nichols WW (1991) Biofilms, antibiotics and penetration. Rev Med Microbiol 2:177–181

    Google Scholar 

  5. Nickel JC, Rueseska I, Wright JB, Costerton JW (1985) Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob Agents Chemother 27:619–624

    CAS  PubMed  Google Scholar 

  6. Widmer AF, Frei R, Rajacic Z, Zimmerli W (1990) Correlation between in vivo and in vitro efficacy of antimicrobial agents against foreign body infections. J Infect Dis 162:96–102

    CAS  PubMed  Google Scholar 

  7. Wright TL, Ellen RP, Lacroix J-M, Sinnadurai S, Mittleman MW (1997) Effects of metronidazole on Porphyromonas gingivalis biofilms. J Periodontal Res 32:473–477

    Article  CAS  PubMed  Google Scholar 

  8. Larsen T, Fiehn NE (1996) Resistance of Streptococcus sanguis biofilms to antimicrobial agents. APMIS 104:280–284

    Article  CAS  PubMed  Google Scholar 

  9. Buckingham-Meyer K, Goeres DM, Hamilton MA (2007) Comparative evaluation of biofilm disinfectant efficacy tests. J Microbiol Methods 70:236–244

    Article  CAS  PubMed  Google Scholar 

  10. Govan JR, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60:539–574

    CAS  PubMed  Google Scholar 

  11. Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762–764

    Article  CAS  PubMed  Google Scholar 

  12. Gardner LR, Stewart PS (2002) Action of glutaraldehyde and nitrite against sulfate-reducing bacterial biofilms. J Ind Microbiol Biotechnol 29:354–360

    Article  CAS  PubMed  Google Scholar 

  13. ASTM International (2007) E2196-07: Standard test method for quantification of a Pseudomonas aeruginosa biofilm grown with shear and continuous flow using a rotating disk reactor. Annual book of ASTM standards, vol 11.05. ASTM International, West Conshohocken, PA

    Google Scholar 

  14. Murga R, Miller JM, Donlan RM (2001) Biofilm formation by gram-negative bacteria on central venous catheter connectors: effect of conditioning films in a laboratory model. J Clin Microbiol 39:2294–2297

    Article  CAS  PubMed  Google Scholar 

  15. ASTM International (2007) E2562-07: Standard test method for quantification of Pseudomonas aeruginosa grown with high shear and continuous flow using a CDC Biofilm Reactor. Annual book of ASTM standards, vol 11.05. ASTM International, West Conshohocken, PA

    Google Scholar 

  16. Pratten J, Wilson M (1999) Antimicrobial susceptibility and composition of microcosm dental plaques supplemented with sucrose. Antimicrob Agents Chemother 43:1595–1599

    CAS  PubMed  Google Scholar 

  17. Norwood DE, Gilmour A (2000) The growth and resistance to sodium hypochlorite of Listeria monocytogenes in a steady-state multispecies biofilm. J Appl Microbiol 88:512–520

    Article  CAS  PubMed  Google Scholar 

  18. Al-Bakri AG, Gilbert P, Allison DG (2004) Immigration and emigration of Burkholderia cepacia and Pseudomonas aeruginosa between and within mixed biofilm communities. J Appl Microbiol 96:455–463

    Article  CAS  PubMed  Google Scholar 

  19. Elvers KT, Leeming K, Lappin-Scott HM (2002) Binary and mixed population biofilms: time-lapse image analysis and disinfection with biocides. J Ind Microbiol Biotechnol 29:331–338

    Article  CAS  PubMed  Google Scholar 

  20. Chin MYH, Busscher HJ, Evans R, Noar J, Pratten J (2006) Early biofilm formation and the effects of antimicrobial agents on orthodontic bonding materials in a parallel plate flow chamber: a novel approach. Eur J Orthod 28:1–7

    Article  PubMed  Google Scholar 

  21. Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A (1999) The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771–1776

    CAS  PubMed  Google Scholar 

  22. Sandoe JA, Wysome J, West AP, Heritage J, Wilcox MH (2006) Measurement of ampicillin, vancomycin, linezolid and gentamicin activity against enterococcal biofilms. J Antimicrob Chemother 57:767–770

    Article  CAS  PubMed  Google Scholar 

  23. Ali L, Khambaty F, Diachenko G (2006) Investigating the suitability of the Calgary Biofilm Device for assessing the antimicrobial efficacy of new agents. Bioresour Technol 97:1887–1893

    Article  CAS  PubMed  Google Scholar 

  24. Spratt DA, Pratten J, Wilson M, Gulabivala K (2001) An in vitro evaluation of the antimicrobial efficacy of irrigants on biofilms of root canal isolates. Int Endod J 34:308–317

    Article  Google Scholar 

  25. Carmen JC, Nelson JL, Beckstead BL, Runyan CM, Robison RA, Schaalje GB, Pitt WG (2004) Ultrasonic-enhanced gentamicin transport through colony biofilms of Pseudomonas aeruginosa and Escherichia coli. J Infect Chemother 10:193–199

    Article  PubMed  Google Scholar 

  26. Charaf S, Bakich L, Falbo DM (1999) A model biofilm for efficacy assessment of antimicrobials versus biofilm bacteria. In: Wimpenny J, Gilbert P, Walker J, Brading M, Bayston R (eds) Biofilms – The good, the bad, and the ugly. Bioline, Cardiff, UK, pp 171–177

    Google Scholar 

  27. Ha KR, Psaltis AJ, Butcher AR, Wormald PJ, Tan LW (2008) In vitro activity of mupirocin on clinical isolates of Staphylococcus aureus and its potential implications in chronic rhinosinusitis. Laryngoscope 118:535–540

    Article  PubMed  Google Scholar 

  28. Pope CF, Gillespie SH, Pratten JR, McHugh TD (2007) Fluoroquinolone-Resistant mutants of Burkholderia cepacia. Antimicrob Agents Chemother 52:1201–1203

    Article  PubMed  Google Scholar 

  29. Honraet K, Nelis HJ (2006) Use of the modified robbins device and fluorescent staining to screen plant extracts for the inhibition of S. mutans biofilm formation. J Microbiol Methods 64:217–224

    Article  CAS  PubMed  Google Scholar 

  30. Mikuniya T, Kato Y, Kariyama R, Monden K, Hikida M, Kumon H (2005) Synergistic effect of fosfomycin and fluoroquinolones against Pseudomonas aeruginosa growing in a biofilm. Acta Med Okayama 59:209–216

    CAS  PubMed  Google Scholar 

  31. Vorachit M, Lam K, Jayanetra P, Costerton JW (1993) Resistance of Pseudomonas pseudomallei growing as a biofilm on silastic discs to ceftazidime and co-trimoxazole. Antimicrob Agents Chemother 37:2000–2002

    CAS  PubMed  Google Scholar 

  32. Hodgson AE, Nelson SM, Brown MR, Gilbert P (1995) A simple in vitro model for growth control of bacterial biofilms. J Appl Bacteriol 79:87–93

    CAS  PubMed  Google Scholar 

  33. Folkesson A, Haagensen JA, Zampaloni C, Sternberg C, Molin S (2008) Biofilm induced tolerance towards antimicrobial peptides. PLoS ONE 3:e1891

    Article  PubMed  Google Scholar 

  34. Neut D, de Groot EP, Kowalski RS, van Horn JR, van der Mei HC, Busscher HJ (2005) Gentamicin-loaded bone cement with clindamycin or fusidic acid added: biofilm formation and antibiotic release. J Biomed Mater Res A 73:165–170

    PubMed  Google Scholar 

  35. Kinniment SL, Wimpenny JW, Adams D, Marsh PD (1996) Development of a steady-state oral microbial biofilm community using the constant-depth film fermenter. Microbiology 142:631–638

    Article  CAS  PubMed  Google Scholar 

  36. Coombe RA, Tatevossian A, Wimpenny JWT (1982) Bacterial thin films as in vitro models for dental plaque. In: Frank RM, Leach SA (eds) Surface and colloid phenomena in the oral cavity: methodological aspects. IRL, London, pp 239–249

    Google Scholar 

  37. Peters AC, Wimpenny JW (1988) A constant-depth laboratory film fermentor. Biotechnol Bioeng 32:263–270

    Article  CAS  PubMed  Google Scholar 

  38. McBain AJ, Bartolo RG, Catrenich CE, Charbonneau D, Ledder RG, Rickard AH, Symmons SA, Gilbert P (2003) Microbial characterization of biofilms in domestic drains and the establishment of stable biofilm microcosms. Appl Environ Microbiol 69:177–185

    Article  CAS  PubMed  Google Scholar 

  39. Ready D, Roberts AP, Pratten J, Wilson M, Mullany P (2002) Composition and antibiotic resistance profile of microcosm dental plaques before and after exposure to tetracycline. J Antimicob Chemother 49:769–775

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pratten, J., Ready, D. (2010). Use of Biofilm Model Systems to Study Antimicrobial Susceptibility. In: Gillespie, S., McHugh, T. (eds) Antibiotic Resistance Protocols. Methods in Molecular Biology, vol 642. Humana Press. https://doi.org/10.1007/978-1-60327-279-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-279-7_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-278-0

  • Online ISBN: 978-1-60327-279-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics