Skip to main content

HIF-1 Regulation of Chemokine Receptor Expression

  • Chapter
  • First Online:
Chemokine Receptors in Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 790 Accesses

Abstract

The chemokine-chemokine receptor system is a highly conserved family of small molecules that bind to a given receptor(s) to regulate the mobilization and trafficking of cells. Hypoxia within the tumor microenvironment plays a role in the upregulation of several chemokine receptors on tumor cells and secretion of different chemokines promoting tumor cell invasion and metastatic spread. Preliminary data from animal models show promising antitumor efficacy with the use of small molecule chemokine receptor antagonists to prevent tumor growth and metastasis. Future studies are needed to evaluate chemokine receptor antagonists alone and in combination with other standard radiation and chemotherapy regimens to control not only local tumor growth but also metastatic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akashi T, Koizumi K, Tsuneyama K, et al. (2008) Chemokine receptor CXCR4 expression and prognosis in patients with metastatic prostate cancer. Cancer Sci 99:539–542

    Article  PubMed  CAS  Google Scholar 

  2. Alsayed Y, Ngo H, Runnels J, et al. (2007) Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood 7:2708–2717

    Google Scholar 

  3. Bajetto A, Barbero S, Bonavia R, et al. (2001) Stromal cell-derived factor- 1alpha induces astrocyte proliferation through the activation of extracellular signal-regulated kinases ½ pathway.J Neurochem 77:1226–1236

    Article  PubMed  CAS  Google Scholar 

  4. Bajetto A, Barbieri F, Dorcaratto A, et al. (2006) Expression of CXC chemokine receptors 1-5 and their ligands in human glioma tissues: Role of CXCR4 and SDF1 in glioma cell proliferation and migration. Neurochem Int 49:423–432

    Article  PubMed  CAS  Google Scholar 

  5. Balkwill F (2004) The significance of cancer cell expression of the chemokine receptor CXCR4. Sem Cancer Biol 14:171–179

    Article  CAS  Google Scholar 

  6. Barbero S, Bonavia R, Bajetto A, et al. (2003) Stromal cell-derived factor 1a stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases ½ and Akt. Cancer Res 63:1969–1974

    PubMed  CAS  Google Scholar 

  7. Basile J, Thiers B, Maize J, et al. (2008) Chemokine receptor expression in non-melanoma skin cancer. J Cutan Pathol DOI:10.1111/j.1600-0560.2007.00879.x

    Google Scholar 

  8. Bian X, Yang S, Chen J, et al. (2007) Preferential expression of chemokine receptor CXCR4 by highly malignant human gliomas and its association with poor patient survival. Neurosurgery 61:570–579

    Article  PubMed  Google Scholar 

  9. Bonello S, Zähringer C, BelAiba RS, et al. (2007) Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site. Arterioscler Thromb Vasc Biol 27:755–761

    Article  PubMed  CAS  Google Scholar 

  10. Bottaro DP and Liotta LA (2003) Cancer: Out of air is not out of action. Nature 423:593–595

    Article  PubMed  CAS  Google Scholar 

  11. Brat DJ, Castellano-Sanchez AA, Hunter SB, et al. (2004) Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res 64:920–927

    Article  PubMed  CAS  Google Scholar 

  12. Brat DJ, Bellail AC, Van Meir EG (2005) The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro-Oncol 7:122–133

    Article  PubMed  CAS  Google Scholar 

  13. Broxmeyer HE, Orschell CM, Clapp DW, et al. (2005) Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 201:1307–1318

    Article  PubMed  CAS  Google Scholar 

  14. Burger JA and Kipps TJ (2005) CXCR4: A key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107:1761–1767

    Article  PubMed  CAS  Google Scholar 

  15. Burns JM, Summers BC, Wang Y, et al. (2006) A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med 203:2201–2213

    Article  PubMed  CAS  Google Scholar 

  16. Busillo JM and Benovic JL (2007) Regulation of CXCR4 signaling. Biochim Biophys Acta Biomembranes 1768:952–963

    Article  CAS  Google Scholar 

  17. Carmeliet P, Dor Y, Herbert JM, et al. (1998) Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394:485–490

    Article  PubMed  CAS  Google Scholar 

  18. Castellone M, Guarino V, De Falco V, et al. (2004) Functional expression of the CXCR4 chemokine receptor is induced by RET/PTC oncogenes and is a common event in human papillary thyroid carcinomas. Oncogene 23:5958–5967

    Article  PubMed  CAS  Google Scholar 

  19. Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10:858–864

    Article  PubMed  CAS  Google Scholar 

  20. De Falco V, Guarino V, Avilla E, et al. (2007) Biological role and potential therapeutic targeting of the chemokine receptor CXCR4 in undifferentiated thyroid cancer. Cancer Res 67:11821–11829

    Article  PubMed  CAS  Google Scholar 

  21. Delilbasi C, Okura M, Iidam S, et al. (2004) Investigation of CXCR4 in squamous cell carcinoma of the tongue. Oral Oncology 40:154–157

    Article  PubMed  CAS  Google Scholar 

  22. Desbaillets I, Diserens AC, de Tribolet N, et al. (1997) Upregulation of interleukin 8 by oxygen-deprived cells in glioblastoma suggests a role in leukocyte activation, chemotaxis, and angiogenesis. J Exp Med 186:1201–1212

    Article  PubMed  CAS  Google Scholar 

  23. Devine SM, Flomenberg N, Vesole DH, et al. (2004) Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and non-Hodgkin's lymphoma. J Clin Oncol 22:1095–1020

    Article  PubMed  CAS  Google Scholar 

  24. Ehtesham M, Winston JA, Kabos P, et al. (2006) CXCR4 expression mediates glioma cell invasiveness. Oncogene 25:2801–2806

    Article  PubMed  CAS  Google Scholar 

  25. Forsythe JA, Jiang BH, Iyer NV, et al. (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4604–4613

    PubMed  CAS  Google Scholar 

  26. Fukunaga S, Maeda K, Noda E, et al. (2006) Association between expression of vascular endothelial growth factor C, chemokine receptor CXCR4 and lymph node metastasis in colorectal cancer. Oncology 71:204–211

    Article  PubMed  CAS  Google Scholar 

  27. Galiano RD, Tepper OM, Pelo CR, et al. (2004) Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol 164:1935–1947

    Article  PubMed  CAS  Google Scholar 

  28. Grutkoski PS, Graeber CT, D’Amico R, et al. (1999) Regulation of IL-8RA (CXCR1) expression in polymorphonucler leukocytes by hypoxia/reoxygenation. J Leukoc Biol 65:171–178

    PubMed  CAS  Google Scholar 

  29. Guillemin K and Krasnow MA (1997) The hypoxic response: Huffing and HIFing. Cell 89:9–12

    Article  PubMed  CAS  Google Scholar 

  30. Guleng B, Tateishi K, Ohta M, et al. (2005) Blockade of the stromal cell derived factor-1 / CXCR4 axis attenuates in vivo tumor growth by inhibiting angiogenesis in vascular endothelial growth factor-independent manner. Cancer Res 13:5864–5871

    Article  Google Scholar 

  31. Hanahan D and Folkman J (1996) Patterns and emerging mechanism of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  PubMed  CAS  Google Scholar 

  32. Hendrix CW, Collier AC, Lederman MM, et al. (2004) Safety, pharmacokinetics, and antiviral activity of AMD3100, a selective CXCR4 receptor inhibitor, in HIV-1 infection. J Acquir Immune Defic Syndr 37:1253–1262

    Article  PubMed  CAS  Google Scholar 

  33. Hong X, Jiang F, Kalkanis SN, et al. (2006) SDF-1 and CXCR4 are up-regulated by VEGF and contribute to glioma cell invasion. Cancer Letts 236:39–45

    Article  CAS  Google Scholar 

  34. Huang LE, Arany Z, Livingston DM, et al. (1996) Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem 271:32253–32259

    Article  PubMed  CAS  Google Scholar 

  35. Huang LE, Gu J, Schau M, et al. (1998) Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 95:7987–7992

    Article  PubMed  CAS  Google Scholar 

  36. Jiang BH., Semenza GL, Bauer C, et al. (1996) Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 271:C1172-C1180

    PubMed  CAS  Google Scholar 

  37. Jung YJ, Isaacs JS, Lee S, et al. (2003) IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J 17:2115–2117

    PubMed  CAS  Google Scholar 

  38. Kallio PJ, Wilson WJ, O'Brien S, et al. (1999) Regulation of the hypoxia-inducible transcription factor 1alpha by the ubiquitin-proteasome pathway. J Biol Chem 274:6519–6525

    Article  PubMed  CAS  Google Scholar 

  39. Kim SY, Lee CH, Midura BV, et al. (2007) Inhibition of the CXCR4/CXCL12 chemokine pathway reduces the development of murine pulmonary metastases. Clin Exp Metastasis DOI 10.1007/s10585-007-9133-3

    Google Scholar 

  40. Kodama J, Hasengaowa L, Kusomoto T, et al. (2007) Association of CXCR4 and CCR7 chemokine receptor expression and lymph node metastasis in human cervical cancer. Ann Oncol 18:70–76

    Article  PubMed  CAS  Google Scholar 

  41. Kopp HG, Ramos CA, Rafii S (2006) Contribution of endothelial progenitors and proangiogenic hematopoietic cells to vascularization of tumor and ischemic tissue. Curr Opin Hematol 13:175–181

    Article  PubMed  CAS  Google Scholar 

  42. Krishnamachary B, Berg-Dixon S, Kelly B, et al. (2003) Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res 63:1138–1143

    PubMed  CAS  Google Scholar 

  43. Kryczek I, Wei S, Keller E, et al. (2007) Stromal-derived factor (SDF-1/CXCL12) and human pathogenesis. Am J Physiol Cell Physiol 292:C987-C995

    Article  PubMed  CAS  Google Scholar 

  44. Kucia M, Reca R, Miekus K, et al. (2005) Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: Pivotal role of the SDF-1-CXCR4 axis. Stem Cells 23:879–894

    Article  PubMed  CAS  Google Scholar 

  45. Kulbe H, Levinson NR, Balkwill F, et al. (2004) The chemokine network in cancer – much more than directing cell movement. Int J Dev Biol 48:489–496

    Article  PubMed  CAS  Google Scholar 

  46. Lakka SS, Gondi CS, Dinh DH, et al. (2005) Specific interference of urokinase-type plasminogen activator receptor and matrix metalloproteinase-9 gene expression induced by double-stranded RNA results in decreased invasion, tumor growth, and angiogenesis in gliomas. J Biol Chem 280:21882–21892

    Article  PubMed  CAS  Google Scholar 

  47. Li M and Ransohoff RM (2008) Multiple roles of chemokine CXCL12 in the central nervous system: A migration from immunology to neurobiology. Prog Neurobiol 84:116–131

    Article  PubMed  CAS  Google Scholar 

  48. Liang Z, Wu T, Lou H, et al. (2004) Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4. Cancer Res 64:4302–4308

    Article  PubMed  CAS  Google Scholar 

  49. Liang Z, Yoon Y, Votaw J, et al. (2005) Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res 65:967–971

    PubMed  CAS  Google Scholar 

  50. Maxwell PJ, Gallagher R, Seaton A, et al. (2007) HIF-1 and NF-kappaB-mediated upregulation of CXCR1 and CXCR2 expression promotes cell survival in hypoxic prostate cancer cells. Oncogene 26:7333–7345

    Article  PubMed  CAS  Google Scholar 

  51. Miao Z, Luker KE, Summers BC, et al. (2007) CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature. Proc Natl Acad Sci USA 104:15735–15740

    Article  PubMed  CAS  Google Scholar 

  52. Mizukami Y, Jo WS, Duerr EM, et al. (2005) Induction of interleukin-8 preserves the angiogenic response in HIF-1alpha-deficient colon cancer cells. Nat Med 11:992–997

    PubMed  CAS  Google Scholar 

  53. Mizukami Y, Kohgo Y, Chung DC (2007) Hypoxia inducible factor-1- independent pathways in tumor angiogenesis. Clin Cancer Res 13:5670–5674

    Article  PubMed  CAS  Google Scholar 

  54. Moldobaeva A and Wagner EM (2005) Difference in proangiogenic potential of systemic and pulmonary endothelium: Role of CXCR2. Am J Physiol Lung Cell Mol Physiol 288:L1117–1123

    Article  PubMed  CAS  Google Scholar 

  55. Muller A, Sonkoly E, Eulert C, et al. (2005) Chemokine receptors in head and neck cancer: Association with metastatic spread and regulation during chemotherapy. Int J Cancer 118:2147–2157

    Article  CAS  Google Scholar 

  56. Murphy C, McGurk M, Pettigrew J, et al. (2005) Nonapical and cytoplasmic expression of interleukin-8, CXCR1, and CXCR2 correlates with cell proliferation and microvessel density in prostate cancer. Clin Cancer Res 11:4117–4127

    Article  PubMed  CAS  Google Scholar 

  57. Oda Y, Yamamoto H, Tamiya S, et al. (2006) CXCR4 and VEGF expression in the primary site and the metastatic site of human osteosarcoma: Analysis within a group of patients, all of whom developed lung metastasis. Mod Pathol 19:738–745

    Article  PubMed  CAS  Google Scholar 

  58. Oh JW, Drabik K, Kutsch O, et al. (2001) CXC chemokine receptor 4 expression and function in human astroglioma cells. J Immunol 166:2695–2704

    PubMed  CAS  Google Scholar 

  59. Ottaiano A, Franco R, Talamanca AA, et al. (2006) Overexpression of both CXC chemokine receptor 4 and vascular endothelial growth factor proteins predicts early distant relapse in stage II-III colorectal cancer patients. Clin Cancer Res 12:2795–2799

    Article  PubMed  CAS  Google Scholar 

  60. Ou DL, Chen CL, Lin SB, et al. (2006) Chemokine receptor expression profiles in nasopharyngeal carcinoma and their association with metastasis and radiotherapy. J Pathol 210:363–373

    Article  PubMed  CAS  Google Scholar 

  61. Pan J, Mestas J, Burdick M, et al. (2006) Stromal cell derived factor -1 (SDF-1/CXCL12) and CXCR4 in renal cell carcinoma metastasis. Mol Cancer DOI:10.1186/1476-4598-5-56

    Google Scholar 

  62. Petit I, Jin D, Rafii S (2007) The SDF-1-CXCR4 signaling pathway: A molecular hub modulating neo-angiogenesis. Trends Immunol 28:299–307

    Article  PubMed  CAS  Google Scholar 

  63. Piovan E, Tosello V, Indraccolo S, et al. (2007) Differential regulation of hypoxia-induced CXCR4 triggering during B-cell development and lymphomagenesis. Cancer Res 67:8605–8614

    Article  PubMed  CAS  Google Scholar 

  64. Plasswilm L, Tannapfel A, Cordes N, et al. (2000) Hypoxia-induced tumour cell migration in an in vivo chicken model. Pathobiology 2000; 68:99–105

    Article  PubMed  CAS  Google Scholar 

  65. Ratajczak MZ, Zuba-Surma E, Kucia M, et al. (2006) The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia 20:1915–1924

    Article  PubMed  CAS  Google Scholar 

  66. Redjal N, Chan JA, Segal RA, et al. (2006) CXCR4 inhibition synergizes with cytotoxic chemotherapy in gliomas. Clin Cancer Res 12:6765–6771

    Article  PubMed  CAS  Google Scholar 

  67. Rempel SA, Dudas S, Ge S, et al. (2000) Identification and localization of the cytokine SDF1 and its receptor, CXC chemokine receptor 4, to regions of necrosis and angiogenesis in human glioblastoma. Clin Cancer Res 6:102–111

    PubMed  CAS  Google Scholar 

  68. Retz M, Sidhu S, Blaveri E, et al. (2005) CXCR4 expression reflects tumor progression and regulates motility of bladder cancer cells. Int J Cancer 114:182–189

    Article  PubMed  CAS  Google Scholar 

  69. Rubin JB, Kung AL, Klein RS, et al. (2003) A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc Natl Acad Sci USA 100:13513–13518

    Article  PubMed  CAS  Google Scholar 

  70. Ruffini PA, Morandi P, Cabioglu N, et al. (2007) Manipulating the chemokine-chemokine receptor network to treat cancer. Cancer 109:2392–2404

    Article  PubMed  CAS  Google Scholar 

  71. Russell H, Hicks J, Okcu F, et al. (2004) CXCR4 expression in neuroblastoma primary tumors is associated with clinical presentation of bone and bone marrow metastases. J Pediat Surg 39:1503–1511

    Article  Google Scholar 

  72. Salceda S and Caro J (1997) Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 272:22642–22647

    CAS  Google Scholar 

  73. Schimanski C, Bahre R, Gockel I, et al. (2006) Dissemination of hepatocellular carcinoma is mediated via chemokine receptor CXCR4. B J Cancer 95:210–217

    Article  CAS  Google Scholar 

  74. Schioppa T, Uranchimeg B, Saccani A, et al. (2003) Regulation of the chemokine CXCR4 by hypoxia. J Exp Med 198:1391–1402

    Article  PubMed  CAS  Google Scholar 

  75. Schutyser E, Su Y, Yu Y, et al. (2007) Hypoxia enhances CXCR4 expression in human microvascular endothelial cells and human melanoma cells. Eur Cytokine Netw 18:59–70

    PubMed  CAS  Google Scholar 

  76. Semenza GL (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15:551–578

    Article  PubMed  CAS  Google Scholar 

  77. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732

    Article  PubMed  CAS  Google Scholar 

  78. Semenza GL (2007) Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE 407:cm8-cm12.

    Google Scholar 

  79. Serratí S, Margheri F, Fibbi G, et al. (2008) Endothelial cells and normal breast epithelial cells enhance invasion of breast carcinoma cells by CXCR-4-dependent up-regulation of urokinase-type plasminogen activator receptor (uPAR, CD87) expression. J Pathol 214:545–554

    Article  PubMed  CAS  Google Scholar 

  80. Shim H, Lau SK, Devi S, et al. (2006) Lower expression of CXCR4 in lymph node metastases than in primary breast cancers: Potential regulation by ligand-dependent degradation and HIF-1α. Biochem Biophys Res Commun 346:252–258

    Article  PubMed  CAS  Google Scholar 

  81. Singh S, Singh UP, Grizzle WE, et al. (2004) CXCL12-CXCR4 interactions modulate prostate cancer cell migration, metalloproteinase expression and invasion. Lab Invest 84:1666–1676

    Article  PubMed  CAS  Google Scholar 

  82. Spring H, Schuler T, Arnold B, et al. (2005) Chemokines direct endothelial progenitors into tumor neovessels. Proc Natl Acad Sci USA 102:18111–18116

    Article  PubMed  CAS  Google Scholar 

  83. Staller P, Sulitkova J, Lisztwan J, et al. (2003) Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 425;307–311

    Article  PubMed  CAS  Google Scholar 

  84. Steeg PS (2003) Angiogenesis inhibitors: Motivators of metastasis? Nat Med 9:822–823

    Article  CAS  Google Scholar 

  85. Strahm B, Durbin A, Sexsmith E, et al. (2008) The CXCR4-SDF1α axis is a critical mediator of rhabdomyosarcoma metastatic signaling induced by bone marrow stroma. Clin Exp Metastasis 25:1–10

    Article  PubMed  CAS  Google Scholar 

  86. Strieter RM, Polverini PJ, Kunkel SL, et al. (1995) The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 270:27348–27357

    Article  PubMed  CAS  Google Scholar 

  87. Struckmann K, Mertz K, Steu S, et al. (2008) pVHL co-ordinately regulates CXCR4/CXCL12 and MMP2/MMP9 expression in human clear-cell renal cell carcinoma. J Pathol 214:463–471

    Google Scholar 

  88. Su L, Zhang J, Xu H, et al. (2005) Differential expression of CXCR4 is associated with the metastatic potential of human non-small lung cancer cells. Clin Cancer Res 23:8273–8280

    Article  CAS  Google Scholar 

  89. Szekanecz Z and Koch AE (2007) Mechanisms of disease: Angiogenesis in inflammatory diseases. Nat Clin Pract Rheumatol 3:635–643

    Article  PubMed  CAS  Google Scholar 

  90. Trentin L, Miorin M, Facco M, et al. (2007) Multiple myeloma plasma cells show different chemokine receptor profiles at sites of disease activity. Br J Haematol 138:594–602

    Article  PubMed  CAS  Google Scholar 

  91. Tucci MG, Lucarini G, Brancorsini D, et al. (2007) Involvement of E-cadherin, β-catenin, Cdc42 and CXCR4 in the progression and prognosis of cutaneous melanoma. Br J Dermatol 157:1212–1216

    Article  PubMed  CAS  Google Scholar 

  92. Uchida D, Onoue T, Tomizuka Y, et al. (2007) Involvement of an autocrine stromal cell derived factor-1/CXCR4 system on the distant metastasis of human oral squamous cell carcinoma. Mol Cancer Res 7:685–694

    Article  Google Scholar 

  93. Wang GL, Jiang BH, Rue EA, et al. (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92:5510–5514

    Article  PubMed  CAS  Google Scholar 

  94. Wang J, Shiozawa Y, Wang J, et al. (2008) The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer. J Biol Chem 283:4283–4294

    Article  PubMed  CAS  Google Scholar 

  95. Warner KA, Miyazawa M, Cordeiro MM, et al. (2008) Endothelial cells enhance tumor cell invasion through a crosstalk mediated by CXC chemokine signaling. Neoplasia 10:131–139

    Article  PubMed  CAS  Google Scholar 

  96. Wehler T, Wolfert F, Schimanski C, et al. (2006) Strong expression of chemokine receptor=CXCR4 by pancreatic cancer correlates with advanced disease. Oncol Rep 16:1159–1164

    PubMed  CAS  Google Scholar 

  97. Woerner BM, Warrington NM, Kung AL, et al. (2005) Widespread CXCR4 activation in astrocytomas revealed by phospho-CXCR4-specific antibodies. Cancer Res 65:11392–11399

    Article  PubMed  CAS  Google Scholar 

  98. Woo S, Bae J, Kim C, et al. (2007) A significant correlation between nuclear CXCR4 expression and axillary lymph node metastasis in hormonal receptor negative breast cancer. Ann Surg Oncol 15:281–285

    Article  PubMed  Google Scholar 

  99. Xie K (2001) Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev 12:375–391

    Article  PubMed  CAS  Google Scholar 

  100. Yang L, Jackson E, Woerner BM, et al. (2007a) Blocking CXCR4-mediated cyclic AMP suppression inhibits brain tumor growth in vivo. Cancer Res 67:651–658

    Article  PubMed  CAS  Google Scholar 

  101. Yang YC, Lee ZY, Wu CC, et al. (2007b) CXCR4 expression is associated with pelvic lymph node metastasis in cervical adenocarcinoma. Int J Gynecol Cancer 17:676–686

    Article  PubMed  Google Scholar 

  102. Yasumoto K, Koizumi K, Kawashima A, et al. (2006) Role of CXCL12/CXCR4 axis in peritoneal carcinomatosis of gastric cancer. Cancer Res 4:2181–2187

    Article  Google Scholar 

  103. Yoon Y, Liang Z, Zhang X, et al. (2007) CXC chemokine receptor-4 antagonist blocks both growth of primary tumor and metastasis of head and neck cancer in xenograft mouse models. Cancer Res 15:7518–7524

    Article  CAS  Google Scholar 

  104. Zagzag D, Zhong H, Scalzitti JM, et al. (2000) Expression of hypoxia-inducible factor 1alpha in brain tumors: Association with angiogenesis, invasion, and progression. Cancer 88:2606–2618

    Article  PubMed  CAS  Google Scholar 

  105. Zagzag D, Krishnamachary B, Yee H, et al. (2005) Stromal cell-derived factor-1α and CXCR4 expression in hemangioblastomas and clear cell-renal cell carcinoma: von Hippel-Lindau loss-of-function induces expression of a ligand and its receptor. Cancer Res 65:6178–6188

    Article  PubMed  CAS  Google Scholar 

  106. Zagzag D, Lukyanov Y, Lan L, et al. (2006) Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: Implications for angiogenesis and glioma cell invasion. Lab Invest 86:1221–1232

    Article  PubMed  CAS  Google Scholar 

  107. Zagzag D, Esencay M, Mendez O, et al. (2008) Hypoxia- and vascular endothelial growth factor-induced stromal cell-derived factor-1alpha/CXCR4 expression in glioblastomas: One plausible explanation of Scherer's structures. Am J Pathol 173:545–560

    Article  PubMed  CAS  Google Scholar 

  108. Zhang J, Lu W, Ye F, et al. (2007) Study on CXCR4/SDF-1 axis in lymph node metastasis of cervical squamous cell carcinoma. Int J Gynecol Cancer 17:478–483

    Article  PubMed  Google Scholar 

  109. Zhang J, Sarkar S, Yong VW (2005) The chemokine stromal cell derived factor-1 (CXCL12) promotes glioma invasiveness through MT2-matrix metalloproteinase. Carcinogenesis 26:2069–2077

    Article  PubMed  CAS  Google Scholar 

  110. Zhou Y, Larsen PH, Hao C, et al. (2002) CXCR4 is a major chemokine receptor on glioma cells and mediates their survival. J Biol Chem 277:49481–49487

    Article  PubMed  CAS  Google Scholar 

  111. Zhong H, De Marzo AM, Laughner E, et al. (1999) Overexpression of hypoxia-inducible factor-1α in common human cancers and their metastases. Cancer Res 59:5830–5835

    PubMed  CAS  Google Scholar 

  112. Zhu YM, Bagstaff SM, Woll PJ (2006) Production and upregulation of granulocyte chemotactic protien-2/CXCL6 by IL-1b and hypoxia in small cell lung cancer. Br J Cancer 94:1936–1941

    Article  PubMed  CAS  Google Scholar 

  113. Zlotnik A and Yoshie O (2000) Chemokines a new classification system and their role in immunity. Immunity 12:121–127

    Article  PubMed  CAS  Google Scholar 

  114. Zlotnik A (2004) Chemokines in neoplastic progression. Sem Cancer Biol 14:181–185

    Article  CAS  Google Scholar 

  115. Zlotnik A (2008) New insights on the role of CXCR4 in cancer metastasis. J Pathol 215:211–213

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth W. Newcomb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Newcomb, E.W., Zagzag, D. (2009). HIF-1 Regulation of Chemokine Receptor Expression. In: Fulton, A. (eds) Chemokine Receptors in Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60327-267-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-267-4_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-266-7

  • Online ISBN: 978-1-60327-267-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics