Skip to main content

Ethylation Interference Footprinting of DNA-Protein Complexes

  • Protocol
  • First Online:
DNA-Protein Interactions

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 543))

Summary

Structural studies of DNA–protein complexes reveal networks of contacts between proteins and the phosphates, sugars and bases of DNA. A range of biochemical methods, termed chemical footprinting, aim to determine the functional groups on DNA which are protected in solution by bound protein against modification or where chemical pre-modification interferes with subsequent protein binding. One of these approaches, termed ethylation interference footprinting, reveals which backbone phosphate groups are contacted by protein and the positions where the DNA–protein interface is so tight that the modification cannot be accommodated. This chapter describes the steps necessary to perform an ethylation interference experiment, including modification of DNA using ethylnitrosourea, fractionation of the products based on their affinities for a DNA-binding protein and analysis of the “bound” and “free” fractions to reveal sites critical for complex formation. This is illustrated using results from our experiments with the Escherichia coli methionine repressor, MetJ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Otwinowski, Z., Schevitz, R.W., Zhang, R.G., Lawson, C.L., Joachimiak, A., Marmorstein, R.Q., Luisi, B.F., and Sigler, P.B. (1988). Crystal-structure of Trp repressor operator complex at atomic resolution. Nature 335, 321–329.

    Article  Google Scholar 

  2. Siebenlist, U., and Gilbert, W. (1980). Contacts between Escherichia coli RNA polymerase and an early promoter of phage T7. Proc. Natl Acad. Sci. USA 77, 122–126.

    Article  Google Scholar 

  3. Hayes, J.J., and Tullius, T.D. (1989). The missing nucleoside experiment – A new technique to study recognition of DNA by protein. Biochemistry 28, 9521–9527.

    Article  Google Scholar 

  4. Alimov, A.P., Langub, M.C., Malluche, H.H., and Koszewski, N.J. (2003). Sp3/Sp1 in the parathyroid gland: Identification of an Sp1 deoxyribonucleic acid element in the parathyroid hormone promoter. Endocrinology 144, 3138–3147.

    Article  Google Scholar 

  5. Jossinet, F., Paillart, J.C., Westhof, E., Hermann, T., Skripkin, E., Lodmell, J.S., Ehresmann, C., Ehresmann, B., and Marquet, R. (1999). Dimerization of HIV-1 genomic RNA of subtypes A and B: RNA loop structure and magnesium binding. RNA 5, 1222–1234.

    Article  PubMed  Google Scholar 

  6. Manfield, I.W., Reynolds, L.A., Gittins, J., and Kneale, G.G. (2000). The DNA-binding domain of the gene regulatory protein AreA extends beyond the minimal zinc-finger region conserved between GATA proteins. Biochim. Biophys. Acta 1493, 325–332.

    PubMed  Google Scholar 

  7. Phillips, S.E., Manfield, I., Parsons, I., Davidson, B.E., Rafferty, J.B., Somers, W.S., Margarita, D., Cohen, G.N., Saint-Girons, I., and Stockley, P.G. (1989). Cooperative tandem binding of Met repressor of Escherichia coli. Nature 341, 711–715.

    Article  PubMed  Google Scholar 

  8. Rafferty, J.B., Somers, W.S., Saint-Girons, I., and Phillips, S.E.V. (1989). 3-Dimensional crystal-structures of Escherichia coli Met repressor with and without corepressor. Nature 341, 705–710.

    Article  PubMed  Google Scholar 

  9. Somers, W.S., and Phillips, S.E.V. (1992). Crystal-structure of the Met repressor-operator complex at 2.8 Angstrom resolution reveals DNA recognition by beta-strands. Nature 359, 387–393.

    Article  PubMed  Google Scholar 

  10. Jensen, D.E., and Reed, D.J. (1978). Reaction of DNA with alkylating-agents – Quantitation of alkylation by ethylnitrosourea of oxygen and nitrogen sites on poly dA-dT including phosphotriester formation. Biochemistry 17, 5098–5107.

    Article  Google Scholar 

  11. Maxam, A.M., and Gilbert, W. (1980). New method for sequencing DNA. Proc. Natl Acad. Sci. USA 74, 560–564.

    Article  Google Scholar 

  12. Maxam, A.M., and Gilbert, W. (1980). Sequencing end-labelled DNA with base-specific chemical cleavages. Methods Enzymol. 65, 499–560.

    Article  Google Scholar 

  13. He, Y.Y., Garvie, C.W., Elworthy, S., Manfield, I.W., McNally, T., Lawrenson, I.D., Phillips, S.E., and Stockley, P.G. (2002). Structural and functional studies of an intermediate on the pathway to operator binding by Escherichia coli MetJ. J. Mol. Biol. 320, 39–53.

    Article  PubMed  Google Scholar 

  14. Bushman, F.D., Anderson, J.E., Harrison, S.C., and Ptashne, M. (1985). Ethylation interference and x-ray crystallography identify similar interactions between 434 repressor and operator. Nature 316, 651–653.

    Article  Google Scholar 

  15. Singer, B. (1976). All oxygens in nucleic acids react with carcinogenic ethylating agents. Nature 264, 333–339.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Stockley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Manfield, I.W., Stockley, P.G. (2009). Ethylation Interference Footprinting of DNA-Protein Complexes. In: Leblanc, B., Moss, T. (eds) DNA-Protein Interactions. Methods in Molecular Biology™, vol 543. Humana Press. https://doi.org/10.1007/978-1-60327-015-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-015-1_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-014-4

  • Online ISBN: 978-1-60327-015-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics