Skip to main content

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 386))

Summary

The β-amyloid peptide aggregates via a nucleation pathway where micellar aggregates propagate to form oligomers (protofibrils), which then polymerize into insoluble fibrils. This fibrillogenic process has been linked to the pathogenesis associated with Alzheimer’s disease. One purpose of this chapter is to provide a protocol for reliably producing monomeric Aβas a starting point for physical and biological studies. Many research groups have used organic solvents to disaggregate pre-seeded Aβ in an attempt to acquire monomeric starting materials. Others have used instrumental techniques such as size exclusion chromatography to isolate monomer, structural intermediates, and fibrils and study their affects on A β nucleation. This chapter discusses a modified method of A βpreparation using organic solvents followed by dissolution into aqueous phosphate buffer systems that renders monomeric A β starting solutions for kinetic experiments. Additionally, this chapter details a number of physical techniques such as scanning force microscopy, circular dichroism spectroscopy, transmission electron microscopy, fluorescence spectroscopy, fluorescence photobleaching recovery, and dynamic light scattering, together with physiological techniques such as cell viability assays to characterize Aβ nucleation, aggregation, and fibrillization and the potential biological activity of the various A βparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Selkoe, D. J. (1991) Amyloid protein and Alzheimer’s disease. Sci. Am. 265(5), 68–78.

    Article  PubMed  CAS  Google Scholar 

  2. Hardy, J., and Selkoe, D.J. (2002) The Amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353–356.

    Article  PubMed  CAS  Google Scholar 

  3. Orpiszewski, J., Schormann, N., Kluve-Beckerman, B., Liepnieks, J. J., and Benson, M. D. (2000) Protein aging hypothesis of Alzheimer’s disease. FASEB J. 14, 1255–1263.

    PubMed  CAS  Google Scholar 

  4. Bitan, G., Lomakin, A., and Teplow, D. B. (2001) Amyloid β -protein oligomerization: prenucleation interactions revealed by photo-induced crosslinking of unmodified proteins. J. Biol. Chem. 276, 35,176–35,184.

    Article  CAS  Google Scholar 

  5. Shao, H., Jao, S., Ma, K., Zagorski, M.G. (1999) Solution structure of micelle-bound amyloid β –(1–40) and β –(1–42) peptides of Alzheimer’s disease. J. Mol. Biol. 285, 755–773.

    Article  PubMed  CAS  Google Scholar 

  6. Shen, C. and Murphy, R.M. (1995) Solvent effects on self-assembly of β –amyloid peptide. Biophys. J. 69, 640–651.

    Article  PubMed  CAS  Google Scholar 

  7. Zagorski, M. G., Yang, J., Shao, H., Ma, K., Zeng, H., and Hong, A. (1999) Methodological and chemical factors affecting amyloid β -peptide amyloidogencity. Methods Enzymol. 309, 189–204.

    Article  PubMed  CAS  Google Scholar 

  8. Joa, S. C., Ma, K., Talafous, J., Orlando, R., and Zagorski, M. G. (1997) Trifluoroacetic acid pre-treatment reproducibly disaggregates the amyloid β -peptide. Amyloid, Int. J. Clin. Exp. Invest. 4, 240–252.

    Google Scholar 

  9. Huang, J. T. H., Fraser, P. E., and Chakrabartty, A. (1997) Fibrillogenesis of Alzheimer A β Peptides Studied by Fluorescence Energy Transfer. J. Mol. Biol. 269, 214–224.

    Article  PubMed  CAS  Google Scholar 

  10. Fezoui, Y., and Teplow, D. B. (2002) Kinetic studies of amyloid β -protein fibril assembly: differential effects of α-helix stabilization. J. Biol. Chem. 277, 36,948–36,954.

    Article  CAS  Google Scholar 

  11. Harper, J. D., Leiber, C. M., and Lansbury, P. T., Jr. (1997) Atomic force microscopic imaging of seeded fibril formation and fibril branching by Alzheimer’s disease amyloid- β protein. Chem. Biol. 4, 951–959.

    Article  PubMed  CAS  Google Scholar 

  12. Harper, J. D., Wong, S. S., Leiber, C. M., and Lansbury, P. T., Jr. (1997) Observation of metastable A β amyloid protofibrils by atomic force microscopy. Chem. Biol. 4, 119–125.

    Article  PubMed  CAS  Google Scholar 

  13. Nichols, M. R., Moss, M. A., Reed, D. K., Cratic-McDaniel, S., Hoh, J. H., and Rosenberry, T. L. (2005) Amyloid- β protofibrils differ from amyloid - β aggregates induced in dilute hexafluoroisopropanol in stability and morphology. J. Biol. Chem. 280, 2471–2480.

    Article  PubMed  CAS  Google Scholar 

  14. Wood, S. J., Maleeff, B., Hart, T., and Wetzel, R. (1996) Physical, morphological and functional differences between pH 5.8 and 7.4 aggregates of the Alzheimer’s amyloid peptide A β. J. Mol. Biol. 256, 870–877.

    Article  PubMed  CAS  Google Scholar 

  15. Khurana, R., Coleman, C., Ionescu-Zanetti, C., Carter, S. A., Krishna, V., Grover, R. K., Roy, R., and Singh, S. (2005) Mechanism of thioflavin T binding to amyloid fibrils. J. Struct. Biol. 151(3), 229–238.

    Article  PubMed  CAS  Google Scholar 

  16. Tjernberg, L. O., Naslund, J., Lindqvist, F., et al. (1996) Arrest of β -amyloid fibril formation by a pentapeptide ligand. J. Biol. Chem. 271, 8545–8548.

    Article  PubMed  CAS  Google Scholar 

  17. Tjernberg, L. O., Callaway, D. J. E., Tjernberg, A., et al. (1999) A molecular model of Alzheimer amyloid β -peptide fibril formation. J. Biol. Chem. 274, 12,619–12,625.

    Article  CAS  Google Scholar 

  18. Soto, C., Kindy, M. S., Baumann, M., and Frangione, B. (1996) Inhibition of Alzheimer’s amyloidosis by peptides that prevent β -sheet conformation. Biochem. Biophys. Res. Commun. 226, 672–680.

    Article  PubMed  CAS  Google Scholar 

  19. Lowe, T. L., Strzelec, A., Kiessling, L. L., and Murphy, R. M. (2001) Structure-function Relationships for inhibitors of β -amyloid toxicity containing the recognition sequence KLVFF. Biochemistry 40, 7882–7889.

    Article  PubMed  CAS  Google Scholar 

  20. Pallitto, M. M., Ghanta, J., Heinzelman, P., Kiessling, L. L., and Murphy, R. M. (1999) Recognition sequence design for peptidyl modulators of β -amyloid aggregation and toxicity. Biochemistry 38, 3570–3578.

    Article  PubMed  CAS  Google Scholar 

  21. Cairo, C. W., Strzelec, A., Murphy, R. M., and Kiessling, L. L. (2002) Affinity-based inhibition of β -amyloid toxicity. Biochemistry 41, 8620–8629.

    Article  PubMed  CAS  Google Scholar 

  22. Gordon, D. J. and Meredith, S. C. (2003) Probing the role of backbone hydrogen Bonding in β -amyloid fibrils with inhibitor peptides containing ester bonds at alternate positions. Biochemistry 42, 475–485.

    Article  PubMed  CAS  Google Scholar 

  23. Gordon, D. J., Tappe, R., and Meredith, S. C. (2002) Design and characterization of a membrane permeable N-methyl amino acid-containing peptide that inhibits A β1-40 fibrillogenesis. J. Peptide Res. 60, 37–55.

    Article  CAS  Google Scholar 

  24. Gordon, D. J., Sciarretta, K. L., and Meredith, S. C. (2001) Inhibition of β-amyloid(40) fibrillogenesis and disassembly of β -amyloid(40) fibrils by short β -amyloid congeners containing N -methyl amino acids at alternate residues. Biochemistry 40, 8237–8245.

    Article  PubMed  CAS  Google Scholar 

  25. Toniolo, C., Crisma, M., Formaggio, F., and Peggion, C. (2001) Control of peptide conformation by the Thorpe-Ingold effect (C-alpha-tetrasubstitution). Biopolymers 60(6), 396–419.

    Article  PubMed  CAS  Google Scholar 

  26. Fu, Y. and Hammer, R. (2002) Efficient acylation of the N-terminus of highly hindered Cα,α-disubstituted amino acids via amino acid symmetrical anhydrides. Org. Lett. 4, 237–240.

    Article  PubMed  CAS  Google Scholar 

  27. Fu, Y., Hammarstrom, L. G. J., Miller, T. J., Fronczek, F. R., McLaughlin, M. L., and Hammer, R. (2001) Sterically hindered Cα ,α-disubstituted amino acids: synthesis from α-nitroacetate and incorporation into peptides. J. Org. Chem. 66, 7118–7124.

    Article  PubMed  CAS  Google Scholar 

  28. Fu, Y., Etienne, M. A. and Hammer, R. (2003) Facile synthesis of α ,α-diisobutylglycine and anchoring its derivatives onto PAL-PEG-PS resin. J. Org. Chem. 68, 9854–9857.

    Article  PubMed  CAS  Google Scholar 

  29. (2002) Synthetic Peptides: A User’s Guide, 2nded. (Grant, G. A., ed.). Oxford University Press, New York.

    Google Scholar 

  30. “Cleavage, Deprotection, and of Peptides after Fmoc Synthesis,” Technical Bulletin, PerSeptive Biosystems.

    Google Scholar 

  31. Sole, N. A. and Barany, G. (1992) Optimization of solid-phase synthesis of [Ala8]-dynorphin A. J. Org. Chem. 57(20), 5399–5403.

    Article  CAS  Google Scholar 

  32. Russo, P. S., Saunders, M. J., Delong, L. M., Kuehl, S. K., Langley, K. H., Detenbeck, R. W. (1986) Zero-angle depolarized light scattering of a colloidal polymer. Anal. Chim. Acta 189, 69–87.

    Article  CAS  Google Scholar 

  33. Bu, Z., Russo, P.S., Tipson, D.L., and Negulescu, I.I. (1994) Self-diffusion of rodlike polymers in isotropic solutions. Macromolecules 27, 1187–1194.

    Article  CAS  Google Scholar 

  34. Lanni, F. and Ware, B.R. (1982) Modulation detection of fluorescence photobleaching recovery. Rev. Sci. Instrum. 53, 905.

    Article  CAS  Google Scholar 

  35. Ware, B. R. (1984) Fluorescence photobleaching recovery. Am. Lab. 16, 16.

    CAS  Google Scholar 

  36. Aucoin, J. (2004) Protein aggregation studies: inhibiting and encouraging β-amyloid aggregation. Ph.D. Dissertation, Louisiana State University Department of Chemistry.

    Google Scholar 

  37. Kim, J. R. and Murphy, R. M. (2004) Mechanism of accelerated assembly of β -amyloid filaments into fibrils by KLVFFK6. Biophys. J. 86, 3194–3203.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Etienne, M.A., Edwin, N.J., Aucoin, J.P., Russo, P.S., McCarley, R.L., Hammer, R.P. (2007). β-Amyloid Protein Aggregation. In: Fields, G.B. (eds) Peptide Characterization and Application Protocols. Methods in Molecular Biology™, vol 386. Humana Press. https://doi.org/10.1007/978-1-59745-430-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-430-8_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-550-7

  • Online ISBN: 978-1-59745-430-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics