Skip to main content

Proteolytic Profiling of the Extracellular Matrix Degradome

  • Protocol
Peptide Characterization and Application Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 386))

Summary

The profiling of protein function is one of the most challenging scientific tasks in the postgenomic age. Traditional protein expression methodologies have focused only on the quantification of proteins under varying conditions or pathologies. Determining the functional differences between protein populations allows for a more accurate view of the outcomes in normal vs diseased proteomes. Because the presence or absence of a protein’s function can affect its complex surroundings (consisting of multiple other proteins and substrates), the study of proteome functionality yields information on protein-protein interactions, amplification cascades, signaling pathways, and posttranslational modifications. Of significant interest are proteinases, as proteolysis is responsible for tight regulation of various cellular and tissue processes. Proteinase activities, or lack there of, alter the proteome makeup by regulating other proteins or by generating cleavage products. This chapter describes current proteolytic profiling technologies using activity or target-based formats. In particular, the analysis of collagenolytic matrix metalloproteinase activity using fluorogenic triple-helical substrates is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barglow, K. T. and Cravatt, B. F. (2004) Discovering disease-associated enzymes by proteome reactivity profiling. Chem. Biol. 11, 1523–1531.

    PubMed  CAS  Google Scholar 

  2. Hwang, I. K., Park, S. M., Kim, S. Y., and Lee, S.-T. (2004) A proteomic approach to identify substrates of matrix metalloproteinase-14 in human plasma. Biochim. Biophys. Acta 1702, 79–87.

    PubMed  CAS  Google Scholar 

  3. Chan, E. W. S., Chattopadhaya, S., Panicker, R. C., Huang, X., and Yao, S. Q. (2004) Developing photoactive affinity probes for proteomic profiling: hydroxamate-based probes for metalloproteases. J. Am. Chem. Soc. 126, 14, 435–14,446.

    CAS  Google Scholar 

  4. Saghatelian, A., Jessani, N., Joseph, A., Humphrey, M., and Cravatt, B. F. (2004) Activity-based probes for the proteomic profiling of metalloproteases. Proc. Natl. Acad. Sci. USA 101, 10,000–10,005.

    CAS  Google Scholar 

  5. Liu, Y., Patricelli, M. P., and Cravatt, B. F. (1999) Activity-based protein profiling: the serine hydrolases. Proc. Natl. Acad. Sci. USA 96, 14,694–14,699.

    CAS  Google Scholar 

  6. Sieber, S. A., Mondala, T. S., Head, S. R., and Cravatt, B. F. (2004) Microarray platform for profiling enzyme activities in complex proteomes. J. Am. Chem. Soc. 126, 15,640–15,641.

    CAS  Google Scholar 

  7. Greenbaum, D., Medzihradszky, K. F., Burlingame, A., and Bogyo, M. (2000) Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem. Biol. 7, 569–581.

    PubMed  CAS  Google Scholar 

  8. Greenbaum, D., Baruch, A., Hayrapetoan, L., Darula, Z., Burlingame, A., Medzihradszky, K., and Bogyo, M. (2002) Chemical approaches for functionally probing the proteome. Mol. Cell. Proteomics 1, 60–68.

    PubMed  CAS  Google Scholar 

  9. Tam, E. M., Morrison, C. J., Wu, Y. I., Stack, M. S., and Overall, C. M. (2004) Membrane protease proteomics: isotope-coded affinity tag MS identification of undescribed MT1-matrix metalloproteinase substrates. Proc. Natl. Acad. Sci. USA 101, 6917–6922.

    PubMed  CAS  Google Scholar 

  10. Lopez-Otin, C., and Overall, C. M. (2002) Protease degradomics: a new challenge for proteomics. Nat. Rev. Mol. Cell. Biol. 3, 509–519.

    PubMed  CAS  Google Scholar 

  11. Baronas-Lowell, D., Lauer-Fields, J. L., and Fields, G. B. (2003) Defining the roles of collagen and collagen-like proteins within the proteome. J. Liq. Chromatogr. Rel. Technol. 26, 2225–2254.

    CAS  Google Scholar 

  12. Liotta, L. A. (1992) Cancer cell invasion and metastasis. Scientific American 266(2), 54–63.

    PubMed  CAS  Google Scholar 

  13. Birkedal-Hansen, H., Moore, W. G. I., Bodden, et al. (1993) Matrix metalloproteinases: a review, Crit. Rev. Oral Biol. Med. 4, 197–250.

    PubMed  CAS  Google Scholar 

  14. Nagase, H. (1996) Matrix metalloproteinases, in Zinc Metalloproteases In Health and Disease (Hooper, N. M., ed.). Taylor & Francis, London: pp. 153–204.

    Google Scholar 

  15. Chambers, A. F. and Matrisian, L. M. (1997) Changing views of the role of matrix metalloproteinases in metastasis. J. Nat. Cancer Inst. 89, 1260–1270.

    PubMed  CAS  Google Scholar 

  16. Kleiner, D. E. and Stetler-Stevenson, W. G. (1999) Matrix metalloproteinases and metastasis, Cancer Chemother. Pharmacol. 43(Suppl.), S42–S51.

    CAS  Google Scholar 

  17. Nelson, A. R., Fingleton, B., Rothenberg, M. L., and Matrisian, L. M. (2000) Matrix metalloproteinases: biologic activity and clinical implications. J. Clin. Oncol. 18, 1135–1149.

    PubMed  CAS  Google Scholar 

  18. Chang, C. and Werb, Z. (2001) The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol. 11, S37–S43.

    PubMed  CAS  Google Scholar 

  19. Hofmann, U. B., Westphal, J. R., van Muijen, G. N. P., and Ruiter, D. J. (2000) Matrix metalloproteinases in human melanoma. J. Invest. Dermatol. 115, 337–344.

    PubMed  CAS  Google Scholar 

  20. Kajita, M., Itoh, Y., Chiba, T., et al. (2001) Membrane-type 1 matrix metallproteinase cleaves CD44 and promotes cell migration. J. Cell Biol. 153, 893–904.

    PubMed  CAS  Google Scholar 

  21. Mori, H., Tomari, T., Koshifumi, I., et al. (2002) CD44 directs membrane-type I matrix metalloproteinase to lamellipodia by associating with its hemopexin-like domain. EMBO J. 21, 3949–3959.

    PubMed  CAS  Google Scholar 

  22. Ohnishi, Y., Tajima, S., and Ishibashi, A. (2001) Coordinate expression of membrane type-matrix metalloproteinases-2 and 3 (MT2-MMP and MT3-MMP) and matrix metalloproteinase-2 (MMP-2) in primary and metastatic melanoma cells. Eur. J. Dermatol. 11, 420–423.

    PubMed  CAS  Google Scholar 

  23. Bodey, B., Bodey, J., B., Siegel, S. E., and Kaiser, H. F. (2001) Matrix metalloproteinase expression in malignant melanomas: tumor-extracellular matrix interactions in invasion and metastasis. In Vivo 15, 57–64.

    PubMed  CAS  Google Scholar 

  24. MacDougall, J. R., Bani, M. R., Lin, Y., Rak, J., and Kerbel, R. S. (1995) The 92-kDa gelatinase B is expressed by advanced stage melanoma cells: suppression by somatic cell hybridization with early stage melanoma cells. Cancer Res. 55, 4174–4181.

    PubMed  CAS  Google Scholar 

  25. Durko, M., Navab, R., Shibata, H. R., and Brodt, P. (1997) Suppression of basement membrane type IV collagen degradation and cell invasion in human melanoma cells expressing an antisense RNA for MMP-1. Biochim. Biophys. Acta 1356, 271–280.

    PubMed  CAS  Google Scholar 

  26. Lauer-Fields, J. L., Broder, T., Sritharan, T., Nagase, H., and Fields, G. B. (2001) Kinetic analysis of matrix metalloproteinase triple-helicase activity using fluorogenic substrates. Biochemistry 40, 5795–5803.

    PubMed  CAS  Google Scholar 

  27. Fields, G. B. (1991) A model for interstitial collagen catabolism by mammalian collagenases. J. Theor. Biol. 153, 585–602.

    PubMed  CAS  Google Scholar 

  28. Billinghurst, R. C., Dahlberg, L., Ionescu, M., et al. (1997) Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J. Clin. Invest. 99, 1534–1545.

    PubMed  CAS  Google Scholar 

  29. Lauer-Fields, J. L., Sritharan, T., Stack, M. S., Nagase, H., and Fields, G. B. (2003) Selective hydrolysis of triple-helical substrates by matrix metalloproteinase-2 and -9. J. Biol. Chem. 278, 18,140–18,145.

    CAS  Google Scholar 

  30. Lauer-Fields, J. L., Kele, P., Sui, G., Nagase, H., Leblanc, R. M., and Fields, G. B. (2003) Analysis of matrix metalloproteinase activity using triple-helical substrates incorporating fluorogenic L- or D-amino acids. Anal. Biochem. 321, 105–115.

    PubMed  CAS  Google Scholar 

  31. Minond, D., Lauer-Fields, J. L., Nagase, H., and Fields, G. B. (2004) Matrix metalloproteinase triple-helical peptidase activities are differentially regulated by substrate stability. Biochemistry 43, 11,474–11,481.

    CAS  Google Scholar 

  32. Fields, C. G., Mickelson, D. J., Drake, S. L., McCarthy, J. B., and Fields, G. B. (1993) Melanoma cell adhesion and spreading activities of a synthetic 124-residue triple-helical “mini-collagen”. J. Biol. Chem. 268, 14,153–14,160.

    CAS  Google Scholar 

  33. Fields, C. G., Lovdahl, C. M., Miles, A. J., Matthias-Hagen, V. L., and Fields, G. B. (1993) Solid-phase synthesis and stability of triple-helical peptides incorporating native collagen sequences. Biopolymers 33, 1695–1707.

    PubMed  CAS  Google Scholar 

  34. Yu, Y.-C., Berndt, P., Tirrell, M., and Fields, G. B. (1996) Self-assembling amphiphiles for construction of protein molecular architecture. J. Am. Chem. Soc. 118, 12,515–12,520.

    CAS  Google Scholar 

  35. Yu, Y.-C., Tirrell, M., and Fields, G. B. (1998) Minimal lipidation stabilizes protein-like molecular architecture. J. Am. Chem. Soc. 120, 9979–9987.

    CAS  Google Scholar 

  36. Corcoran, M. L., Hewitt, R. E., Kleiner, D. E., and Stetler-Stevenson, W. G. (1996) MMP-2: expression, activation and inhibition. Enzyme Protein 49, 7–19.

    PubMed  CAS  Google Scholar 

  37. Giannelli, G., Falk-Marzillier, J., Schiraldi, O., Stetler-Stevenson, W. G., and Quaranta, V. (1997) Induction of cell migration by matrix metalloprotease-2 cleabage of laminin-5. Science 277, 225–228.

    PubMed  CAS  Google Scholar 

  38. Xu, J., Rodriguez, D., Petitclerc, E., et al. (2001) Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J. Cell Biol. 154, 1069–1080.

    PubMed  CAS  Google Scholar 

  39. Young, T. N., Pizzo, S. V., and Stack, M. S. (1995) A plasma membrane-associated component of ovarian adenocarcinoma cells enhances the catalytic efficiency of matrix metalloproteinase-2. J. Biol. Chem. 270, 999–1002.

    PubMed  CAS  Google Scholar 

  40. Deryugina, E. I., Bourdon, M. A., Reisfeld, R. A., and Strongin, A. (1998) Remodeling of collagen matrix by human tumor cells requires activation and cell surface association of matrix metalloproteinase-2. Cancer Res. 58, 3743–3750.

    PubMed  CAS  Google Scholar 

  41. Bergers, G., Brekken, R. A., McMahon, G., et al. (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biol. 2, 737–744.

    PubMed  CAS  Google Scholar 

  42. Ramos-DeSimone, N., Hahn-Dantona, E., Sipley, J., Nagase, H., French, D. L., and Quigley, J. P. (1999) Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. J. Biol. Chem. 274, 13,066–13,076.

    CAS  Google Scholar 

  43. Fiore, E., Fusco, C., Romero, P., and Stamenkovic, I. (2002) Matrix metalloproteinase 9 (MMP-9/gelatinase B) proteolytically cleaves ICAM-1 and participates in tumor cell resistance to natural killer cell-mediated cytotoxicity. Oncogene 21, 5213–5223.

    PubMed  CAS  Google Scholar 

  44. Terp, G. E., Cruciani, G., Christensen, I. T., and Jorgensen, F. S. (2002) Structural differences of matrix metalloproteinases with potential implications for inhibitor selectivity examined by the GRID/CPCA approach. J. Med. Chem. 45, 2675–2684.

    PubMed  CAS  Google Scholar 

  45. Mucha, A., Cuniasse, P., Kannan, R., et al. (1998) Membrane type-1 matrix metalloproteinase and stromelysin-3 cleave more efficiently synthetic substrates containing unusual amino acids in their P 1 positions. J. Biol. Chem. 273, 2763–2768.

    PubMed  CAS  Google Scholar 

  46. Ohkubo, S., Miyadera, K., Sugimoto, Y., Matsuo, K.-I., Wierzba, K., and Yamada, Y. (1999) Identification of substrate sequences for membrane type-1 matrix metalloproteinase using bacteriophage peptide display library. Biochem. Biophys. Res. Commun. 266, 308–313.

    PubMed  CAS  Google Scholar 

  47. Kridel, S. J., Sawai, H., Ratnikov, B. I., et al. (2002) A unique substrate binding mode discriminates membrane type 1-matrix metalloproteinase (MT1-MMP) from other matrix metalloproteinases. J. Biol. Chem. 277, 23,788–23,793.

    CAS  Google Scholar 

  48. Lauer-Fields, J. L., Nagase, H., and Fields, G. B. (2004) Development of a solid-phase assay for analysis of matrix metalloproteinase activity. J. Biomolecular Techniques 15, 305–316.

    Google Scholar 

  49. Kramer, R. H. and Marks, N. (1989) Identification of intracellular collagen receptor on human melanoma cells. J. Biol. Chem. 264, 4684–4688.

    PubMed  CAS  Google Scholar 

  50. Miles, A. J., Knutson, J. R., Skubitz, A. P. N., Furcht, L. T., McCarthy, J. B., and Fields, G. B. (1995) A peptide model of basement membrane collagen α1(IV) 531–543 binds the α3β1 integrin. J. Biol. Chem. 270, 29,047–29,050.

    CAS  Google Scholar 

  51. Klein, C. E., Dressel, D., Steinmayer, T., et al. (1991) Integrin α2β1 is upregulated in fibroblasts and highly aggressive melanoma cell in three-dimensional collagen lattices and mediates the reorganization of type I collagen fibrils. J. Cell Biol. 115, 1427–1436.

    PubMed  CAS  Google Scholar 

  52. Yoshinaga, I. G., Vink, J., Dekker, S. K., Mihm, M.C., Jr., and Byers, H. R. (1993) Role of α3β1 and α2β1 integrins in melanoma cell migration, Melanoma Res. 3, 435–441.

    PubMed  CAS  Google Scholar 

  53. Heino, J. (1996) Biology of tumor cell invasion: interplay of cell adhesion and matrix degradation. Int. J. Cancer 65, 717–722.

    PubMed  CAS  Google Scholar 

  54. Mizejewski, G. J. (1999) Role of integrins in cancer: survey of expression patterns. Proc. Soc. Exp. Biol. Med. 222, 124–138.

    PubMed  CAS  Google Scholar 

  55. Etoh, T., Thomas, L., Pastel-Levy, C., Colvin, R. B., Mihm, M. C., Jr., and Byers, H. R. (1993) Role of integrin α2β1 (VLA-2) in the migration of human melanoma cells on laminin and type IV collagen. J. Invest. Dermatol. 100, 640–647.

    PubMed  CAS  Google Scholar 

  56. Knutson, J. R., Iida, J., Fields, G. B., and McCarthy, J. B. (1996) CD44/chondroitin sulfate proteoglycan and α2β1 integrin mediate human melanoma cell migration on type IV collagen and invasion of basement membranes. Mol. Biol. Cell 7, 383–396.

    PubMed  CAS  Google Scholar 

  57. Melchiori, A., Mortarini, R., Carlone, S., et al. (1995) The α3β1 integrin is involved in melanoma cell migration and invasion. Exp. Cell Res. 219, 233–242.

    PubMed  CAS  Google Scholar 

  58. Schön, M., Schön, M. P., Kuhröber, A., Schirmbeck, R., Kaufmann, R., and Klein, C. E. (1996) Expression of the human α2 integrin subunit in mouse melanoma cell confers the ability to undergo collagen-directed adhesion, migration, and matrix reorganization. J. Invest. Dermatol. 106, 1175–1181.

    PubMed  Google Scholar 

  59. Schwartz, M. A. (2001) Integrin signaling revisited. Trends Cell Biol. 11, 466–470.

    PubMed  CAS  Google Scholar 

  60. Hood, J. D. and Cheresh, D. A. (2002) Role of integrins in cell invasion and migration. Nature Rev. Cancer 2, 91–100.

    Google Scholar 

  61. Alessandro, R. and Kohn, E. C. (2002) Signal transduction targets in invasion. Clin. Exp. Metastasis 19, 265–273.

    PubMed  CAS  Google Scholar 

  62. Riikonen, T., Westermarck, J., Koivisto, L., Broberg, A., Kähäri, V.-M., and Heino, J. (1995) Integrin α2β1 is a positive regulator of collagenase (MMP-1) and collagen α1(I) gene expression. J. Biol. Chem. 270, 13,548–13,552.

    CAS  Google Scholar 

  63. Chintala, S. K., Sawaya, R., Gokaslan, Z. L., and Rao, J. S. (1996) Modulation of matrix metalloprotease-2 and invasion in human glioma cells by α3β1 integrin. Cancer Lett. 103, 201–208.

    PubMed  CAS  Google Scholar 

  64. Kubota, S., Ito, H., Ishibashi, Y., and Seyama, Y. (1997) Anti-α3 integrin antibody induces the activated form of matrix metalloprotease-2 (MMP-2) with concomitant stimulation of invasion through matrigel by human rhabdomyosarcoma cells. Int. J. Cancer 70, 106–111.

    PubMed  CAS  Google Scholar 

  65. Ellerbroek, S. M., Wu, Y. I., Overall, C. M., and Stack, M. S. (2001) Functional interplay between type I collagen and cell surface matrix metalloproteinase activity. J. Biol. Chem. 276, 24,833–24,842.

    CAS  Google Scholar 

  66. Larjava, H., Lyons, J. G., Salo, T., et al. (1993) Anti-integrin antibodies induce type IV collagenase expression in keratinocytes. J. Cell. Physiol. 157, 190–200.

    PubMed  CAS  Google Scholar 

  67. Stricker, T. P., Dumin, J. A., Dickeson, S. K., et al. (2001) Structural analysis of the α2 integrin I domain/procollagenase-1 (matrix metalloproteinase-1) interaction. J. Biol. Chem. 276, 29,375–29,381.

    CAS  Google Scholar 

  68. Brooks, P. C., Strömblad, S., Sanders, L. C., et al. (1996) Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ3. Cell 85, 683–693.

    PubMed  CAS  Google Scholar 

  69. Miranti, C. K. and Brugge, J. S. (2002) Sensing the environment: a historical perspective on integrin signal transduction. Nat. Cell Biol. 4, E83–E90.

    PubMed  CAS  Google Scholar 

  70. Faassen, A. E., Drake, S. L., Iida, J., Knutson, J. R., and McCarthy, J. B. (1992) Mechanisms of normal cell adhesion to the extracellular matrix and alterations associated with tumor invasion and metastasis. Adv. Pathol. Lab. Med 5, 229–259.

    Google Scholar 

  71. Iida, J., Meijne, A. M. L., Knutson, J. R., Furcht, L. T., and McCarthy, J. B. (1996) Cell surface chondroitin sulfate proteoglycans in tumor cell adhesion, motility and invasion. Semin. Cancer Biol. 7, 155–162.

    PubMed  CAS  Google Scholar 

  72. Leigh, C. J., Palechek, P. L., Knutson, J. R., McCarthy, J. B., Cohen, M. B., and Argenyi, Z. B. (1996) CD44 expression in benign and malignant nevomelanocytic lesions. Hum. Pathol. 27, 1288–1294.

    PubMed  CAS  Google Scholar 

  73. Lesley, J., Hyman, R., English, N., Catterall, J. B., and Turner, G. A. (1997) CD44 in inflammation and metastasis, Glycoconjugate J. 14, 611–622.

    CAS  Google Scholar 

  74. Ahrens, T., Assmann, V., Fieber, C., et al. (2001) CD44 is the principal mediator of hyaluronic-acid-induced melanoma cell proliferation, J. Invest. Dermatol. 116, 93–101.

    PubMed  CAS  Google Scholar 

  75. Ranuncolo, S. M., Ladeda, V., Gorostidy, S., et al. (2002) Expression of CD44s and CD44 splice variants in human melanoma. Oncology Reports 9, 51–56.

    PubMed  Google Scholar 

  76. Griffioen, A. W., Coenen, M. J. H., Damen, C. A., et al. (1997) CD44 is involved in tumor angiogenesis; an activation antigen on human endothelial cells. Blood 90, 1150–1159.

    PubMed  CAS  Google Scholar 

  77. Naor, D., Slonov, R. V., and Ish-Shalom, D. (1997) CD44: structure, function, and association with the malignant process, in Advances in Cancer Research (Vande Woude, G. F., and Klein, G., eds.) Academic, Orlando, FL: pp. 241–319.

    Google Scholar 

  78. Eliaz, R. E. and Szoka, F.C., Jr. (2001) Liposome-encapsulated doxorubicin targeted to CD44: a strategy to kill CD44-overexpressing tumor cells, Cancer Res. 61, 2592–2601.

    PubMed  CAS  Google Scholar 

  79. Wald, M., Olejár, T., Sebková, V., Zadinová, M., Boubelìk, M., and Poucková, P. (2001) Mixture of trypsin, chymotrypsin and papain reduces formation of metastases and extends survival time of C57Bl6 mice with syngeneic melanoma B16. Cancer Chemother. Pharmacol. 47, S16–S22.

    PubMed  CAS  Google Scholar 

  80. Chelberg, M. K., McCarthy, J. B., Skubitz, A. P. N., Furcht, L. T., and Tsilibary, E. C. (1990) Characterization of a synthetic peptide from type IV collagen that promotes melanoma cell adhesion, spreading, and motility. J. Cell Biol. 111, 261–270.

    PubMed  CAS  Google Scholar 

  81. Mayo, K. H., Parra-Diaz, D., McCarthy, J. B., and Chelberg, M. (1991) Cell adhesion promoting peptide GVKGDKGNPGWPGAP from the collagen type IV triple helix. Biochemistry 30, 8251–8267.

    PubMed  CAS  Google Scholar 

  82. Yu, Y.-C., Pakalns, T., Dori, Y., McCarthy, J. B., Tirrell, M., and Fields, G. B. (1997) Construction of biologically active protein molecular architecture using self-assembling peptide-amphiphiles. Meth. Enzymol. 289, 571–587.

    PubMed  CAS  Google Scholar 

  83. Fields, G. B., Lauer, J. L., Dori, Y., Forns, P., Yu, Y.-C., and Tirrell, M. (1998) Proteinlike molecular architecture: biomaterial applications for inducing cellular receptor binding and signal transduction. Biopolymers 47, 143–151.

    PubMed  CAS  Google Scholar 

  84. Malkar, N. B., Lauer-Fields, J. L., Borgia, J. A., and Fields, G. B. (2002) Modulation of triple-helical stability and subsequent melanoma cellular responses by single-site substitution of fluoroproline derivatives. Biochemistry 41, 6054–6064.

    PubMed  CAS  Google Scholar 

  85. Lauer-Fields, J. L., Malkar, N. B., Richet, G., Drauz, K., and Fields, G. B. (2003) Melanoma cell CD44 interaction with the α1(IV)1263-1277 region from basement membrane collagen is modulated by ligand glycosylation. J. Biol. Chem. 278, 14,321–14,330.

    CAS  Google Scholar 

  86. Bourguignon, L. Y. W., Gunja-Smith, Z., Iida, N., et al. (1998) CD44v3,8-10 is involved in cytoskeleton-mediated tumor cell migration and matrix metalloproteinase (MMP-9) association in metastatic breast cancer cells. J. Cell. Physiol. 176, 206–215.

    PubMed  CAS  Google Scholar 

  87. Yu, Q. and Stamenkovic, I. (1999) Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Develop. 13, 35–48.

    PubMed  CAS  Google Scholar 

  88. Lynch, C. C. and Matrisian, L. M. (2002) Matrix metalloproteinases in tumor-host cell communication. Differentiation 70, 561–573.

    PubMed  CAS  Google Scholar 

  89. Carter, W. G. and Wayner, E. A. (1988) Characterization of the class III collagen receptor, a phosphorylated, transmembrane glycoprotein expressed in nucleated human cells. J. Biol. Chem. 263, 4193–4201.

    PubMed  CAS  Google Scholar 

  90. Ehnis, T., Dieterich, W., Bauer, M., von Lampe, B., and Shuppan, D. (1996) A chondroitin/dermatan sulfate form of CD44 is a receptor for collagen XIV (undulin). Exp. Cell Res. 229, 388–397.

    PubMed  CAS  Google Scholar 

  91. Faassen, A. E., Schrager, J. A., Klein, D. J., Oegema, T. R., Couchman, J. R., and McCarthy, J. B. (1992) A cell surface chondroitin sulfate proteoglycan, immunologically related to CD44, is involved in type I collagen-mediated melanoma cell motility and invasion. J. Cell Biol. 116, 521–531.

    PubMed  CAS  Google Scholar 

  92. Fujisaki, T., Tanaka, Y., Fujii, K., et al. (1999) CD44 stimulation induces integrin-mediated adhesion of colon cancer cell lines to endothelial cells by up-regulation of integrins and c-Met activation of integrins. Cancer Res. 59, 4427–4434.

    PubMed  CAS  Google Scholar 

  93. Takahashi, K., Eto, H., and Tanabe, K. K. (1999) Involvement of CD44 in matrix metalloproteinase-2 regulation in human melanoma cells. Int. J. Cancer 80, 387–395.

    PubMed  CAS  Google Scholar 

  94. Baronas-Lowell, D., Lauer-Fields, J. L., Borgia, J. A., et al. (2004) Differential modulation of human melanoma cell metalloproteinase expression by α 2 β 1 integrin and CD44 triple-helical ligands derived from type IV collagen. J. Biol. Chem. 279, 43,503–43,513.

    CAS  Google Scholar 

  95. Knight, C. G., Morton, L. F., Onley, D. J., et al. (1998) Identification in collagen type I of an integrin α 2 β 1-binding site containing an essential GER sequence. J. Biol. Chem. 273, 33,287–33,294.

    CAS  Google Scholar 

  96. Knight, C. G., Morton, L. F., Peachey, A. R., Tuckwell, D. S., Farndale, R. W., and Barnes, M. J. (2000) The collagen-binding A-domains of integrin α 1 β 1 and α 2 β 1 recognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens. J. Biol. Chem. 275, 35–40.

    PubMed  CAS  Google Scholar 

  97. Emsley, J., Knight, C. G., Farndale, R. W., Barnes, M. J., and Liddington, R. C. (2000) Structural basis of collagen recognition by integrin α 2 β 1. Cell 101, 47–56.

    PubMed  CAS  Google Scholar 

  98. Mickelson, D. J., Faassen, A. E., and McCarthy, J. B. (1991) A cell surface chondroitin sulfate proteoglycan mediates melanoma cell motility and adhesion to a helical domain of type IV collagen. J. Cell Biol. 115, 287a.

    Google Scholar 

  99. Knutson, J. R., Fields, G. B., Iida, J., Miles, A. J., and McCarthy, J. B. (1995) A type IV collagen-derived synthetic peptide, IV-H1, interacts with human melanoma CD44/chondroitin sulfate proteoglycan and inhibits invasion of basement membranes. Proc. Am. Assoc. Cancer Res. 36, 68.

    Google Scholar 

  100. Toth, M., Hernandez-Barrantes, S., Osenkowski, P., et al. (2002) Complex pattern of membrane type I matrix metalloproteinase shedding. J. Biol. Chem. 277, 26,340–26,350.

    CAS  Google Scholar 

  101. Osenkowski, P., Toth, M., and Fridman, R. (2004) Processing, shedding, and endocytosis of membrane type 1-matrix metalloproteinase (MT1-MMP). J. Cell. Physiol. 200, 2–10.

    PubMed  CAS  Google Scholar 

  102. Hsu, M.-Y., Meier, F., and Herlyn, M. (2002) Melanoma development and progression: a conspiracy between tumor and host. Differentiation 70, 522–536.

    PubMed  CAS  Google Scholar 

  103. Park, C. C., Bissell, M. J., and Barcellos-Hoff, M. H. (2000) The influence of the microenvironment on the malignant phenotype. Mol. Med. Today 6, 324–329.

    PubMed  CAS  Google Scholar 

  104. Li, G., Satyamoorthy, K., Meier, F., Berking, C., Bogenrieder, T., and Herlyn, M. (2003) Function and regulation of melanoma-stromal fibroblast interactions: when seeds meet soil. Oncogene 22, 3162–3171.

    PubMed  CAS  Google Scholar 

  105. Bogenrieder, T. and Herlyn, M. (2002) Cell-surface proteolysis, growth factor activation and intercellular communication in the progression of melanoma. Crit. Rev. Oncol. Hematol. 44, 1–15.

    PubMed  Google Scholar 

  106. Wandel, E., Grabhoff, A., Mittag, M., Haustein, U. F., and Saalbach, A. (2000) Fibroblast surrounding melanoma express elevated levels of matrix metalloproteinase-1 (MMP-1) and intercellular adhesion molecule-1 (ICAM-1) in vitro. Exp. Dermatol. 9, 34–41.

    PubMed  CAS  Google Scholar 

  107. Wang, T. N., Albo, D., and Tuszynski, G. P. (2002) Fibroblasts promote breast cancer cell invasion by upregulating tumor matrix metalloproteinase-9 production. Surgery 132, 220–225.

    PubMed  Google Scholar 

  108. Park, J. E., Lenter, M. C., Zimmermann, R. N., Garin-Chesa, P., Old, L. J., and Rettig, W. J. (1999) Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J. Biol. Chem. 274, 36,505–36,512.

    CAS  Google Scholar 

  109. Basset, P., Okada, A., Chenard, M. P., et al. (1997) Matrix metalloproteinases as stromal effectors of human carcinoma progression: therapeutic implications. Matrix Biol. 15, 535–541.

    PubMed  CAS  Google Scholar 

  110. Chung, L., Shimokawa, K., Dinakarpandian, D., Grams, F., Fields, G. B., and Nagase, H. (2000) Identification of the RWTNNFREY(183–191) region as a critical segment of matrix metalloproteinase 1 for the expression of collagenolytic activity. J. Biol. Chem. 275, 29,610–29,617.

    CAS  Google Scholar 

  111. Itoh, Y., Binner, S., and Nagase, H. (1995) Steps involved in activation of the complex of pro-matrix metalloproteinase 2 (progelatinase A) and tissue inhibitor of metalloproteinases (TIMP)-2 by 4-aminophenylmercuric acetate. Biochem. J. 308, 645–651.

    PubMed  CAS  Google Scholar 

  112. Huang, W., Suzuki, K., Nagase, H., Arumugam, S., Van Doren, S., and Brew, K. (1996) Folding and characterization of the amino-terminal domain of human tissue inhibitor of metalloproteinases-1 (TIMP-1) expressed at high yield in E. coli. FEBS Lett. 384, 155–161.

    PubMed  CAS  Google Scholar 

  113. Hurst, D. R., Schwartz, M. A., Ghaffari, M. A., et al. (2004) Catalytic- and ecto-domains of membrane type 1-matrix metalloproteinase have similar inhibition profiles but distinct endopeptidase activities. Biochem. J. 377, 775–779.

    PubMed  CAS  Google Scholar 

  114. Lauer-Fields, J. L., and Fields, G. B. (2002) Triple-helical peptide analysis of collagenolytic protease activity, Biol. Chem. 383, 1095–1105.

    PubMed  CAS  Google Scholar 

  115. Singh, A., Nelson-Moon, Z. L., Thomas, G. J., Hunt, N. P., and Lewis, M. P. (2000) Identification of matrix metalloproteinases and their tissue inhibitors type 1 and 2 in human masseter muscle. Arch. Oral Biol. 45, 431–440.

    PubMed  CAS  Google Scholar 

  116. Wong, H., Muzik, H., Groft, L. L., et al. (2001) Monitoring MMP and TIMP mRNA expression by RT-PCR, in Matrix Metalloproteinase Protocols: Methods in Molecular Biology, Vol. 151 (Clark, I. M., ed.) Humana, Totowa, NJ: pp. 305–333.

    Google Scholar 

  117. Crowther, J. R. (1995) ELISA: Theory and Practice, Vol. 42. Humana, Totowa, NJ.

    Google Scholar 

  118. Lauer, J. L., Gendron, C. M., and Fields, G. B. (1998) Effect of ligand conformation on melanoma cell α3β1 integrin-mediated signal transduction events: implications for a collagen structural modulation mechanism of tumor cell invasion. Biochemistry 37, 5279–5287.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the National Institutes of Health CA77402 and CA98799 (to G.B.F.) and the FAU Center of Excellence in Biomedical and Marine Biotechnology (contribution #P200506).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Baronas-Lowell, D., Lauer-Fields, J.L., Al-Ghoul, M., Fields, G.B. (2007). Proteolytic Profiling of the Extracellular Matrix Degradome. In: Fields, G.B. (eds) Peptide Characterization and Application Protocols. Methods in Molecular Biology™, vol 386. Humana Press. https://doi.org/10.1007/978-1-59745-430-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-430-8_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-550-7

  • Online ISBN: 978-1-59745-430-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics