Skip to main content

Free Fatty Acids, Insulin Resistance, and Ectopic Fat

  • Chapter
Book cover Treatment of the Obese Patient

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

The development of obesity induces resistance to the effect of insulin to stimulate uptake of glucose and suppress release of fatty acids. These metabolic impairments are inter-related and competition between glucose and fatty acids i s a key aspect of the pathogenesis of insulin resistance. Another important factor is that fat calories accumulate within muscle and liver and the presence of an increased fat content in these organs correlates with severity of insulin resistance. This chapter reviews recent findings and background concepts regarding “ectopic fat” and substrate competition and how these contribute to obesity induced insulin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Himsworth H, Kerr R. Insulin-sensitive and insulin-insensitive types of diabetes mellitus. Clin Sci 1939;4:119–152.

    CAS  Google Scholar 

  2. Himsworth H. The mechanism of diabetes mellitus. I. Lancet 1939;2:1–6.

    Article  Google Scholar 

  3. Himsworth H. The mechanism of diabetes mellitus. II. The control of the blood sugar level. Lancet 1939;2:65–68.

    Article  Google Scholar 

  4. Yalow RS, Berson SA. Immunoassay of endogenous plasma insulin in man. J Clin Invest 1960;39:1157–1175.

    PubMed  CAS  Google Scholar 

  5. Ferrannini E, Buzzigoli G, Bonadonna R, et al. Insulin resistance in essential hypertension. N Engl J Med 1987;317:350–357.

    Article  PubMed  CAS  Google Scholar 

  6. Randle P, Garland P, Hales C, et al. The glucose fatty acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963; 1:785–789.

    Article  PubMed  CAS  Google Scholar 

  7. Boden G. Role of fatty acids in the pathogenesis of insulin resistance in NIDDM. Diabetes 1997;46:3–10.

    Article  PubMed  CAS  Google Scholar 

  8. Boden G, Chen X. Effects of fat on glucose uptake and utilization in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 1995;96:1261–1268.

    PubMed  CAS  Google Scholar 

  9. Kelley D, Mokan M, Simoneau J-A, et al. Interaction between glucose and free fatty acid metabolism in human skeletal muscle. J Clin Invest 1993;92:93–98.

    Google Scholar 

  10. Kelley D, Mokan M, Mandarino L. Intracellular defects in glucose metabolism in obese patients with noninsulin-dependent diabetes mellitus. Diabetes 1992;41:698–706.

    Article  PubMed  CAS  Google Scholar 

  11. Kelley D, Williams K, Price J, et al. Plasma fatty acids, adiposity, and variance of skeletal muscle insulin resistance in type 2 diabetes mellitus. J Clin Endocrinol Metab 2001;86:5412–5419.

    Article  PubMed  CAS  Google Scholar 

  12. Santomauro A, Boden G, Silva M, et al. Overnight lowering of free fatty acids with Acipimox improves insulin resistance and glucose tolerance in obese diabetic and nondiabetic subjects. Diabetes 1999;48:1836–1841.

    Article  PubMed  CAS  Google Scholar 

  13. Goodpaster BH, Thaete FL, Simoneau JA, et al. Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. Diabetes 1997;46:1579–1585.

    Article  PubMed  CAS  Google Scholar 

  14. Kirtland J, Gurr MI. Adipose tissue cellularity: a review. 2. The relationship between cellularity and obesity. Int J Obes 1979;3:15–55.

    PubMed  CAS  Google Scholar 

  15. Basil A, Basu R, Shah P, et ai. Systemic and regional free fatty acid metabolism in type 2 diabetes. Am J Physiol Endocrinol Metab 2001;280:E1000–E1006.

    Google Scholar 

  16. Salans LB, Cushman SW, Weismann RE. Studies of human adipose tissue. Adipose cell size and number in nonobese and obese patients. J Clin Invest 1973;52:929–941.

    PubMed  CAS  Google Scholar 

  17. Weyer C, Wolford JK, Hanson RL, et al. Subcutaneous abdominal adipocyte size, a predictor of type 2 diabetes, is linked to chromosome Iq21-q23 and is associated with a common polymorphism in LMNA in Pima Indians. Mol Genet Metab 2001;72:231–238.

    Article  PubMed  CAS  Google Scholar 

  18. Andres R, Cader G, Zierler K. The quantitatively minor role of carbohydrate in oxidative metabolism by skeletal muscle in intact man in the basal state. Measurement of oxygen and glucose uptake and carbon dioxide and lactate production in the forearm. J Clin Invest 1956;35:671–682.

    PubMed  CAS  Google Scholar 

  19. Mott D, Lillioja S, Bogardus C. Overnutrition induced decrease in insulin action for glucose storage: in vivo and in vitro in man. Metabolism 1986;35:160–165.

    Article  PubMed  CAS  Google Scholar 

  20. Kelley DE, Mandarino LJ. Hyperglycemia normalizes insulin-stimulated skeletal muscle glucose oxidation and storage in noninsulin-dependent diabetes mellitus. J Clin Invest 1990;86:1999–2007.

    PubMed  CAS  Google Scholar 

  21. Kelley D, Simoneau J: Impaired free fatty acid utilization by skeletal muscle in non-insulin-dependent diabetes mellitus. J Clin Invest 1994;94:2349–2356.

    PubMed  CAS  Google Scholar 

  22. Mandarino LJ, Consoli A, Jain A, et al. Differential regulation of intracellular glucose metabolism by glucose and insulin in human muscle. Am J Physiol 1993;265:E898–E905.

    PubMed  CAS  Google Scholar 

  23. Kelley D, Goodpaster B, Wing R, et al. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity and weight loss. Am J Physiol 1999;277:E1130–E1141.

    PubMed  CAS  Google Scholar 

  24. Kelley D, Mandarino L. Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes 2000;49:677–683.

    Article  PubMed  CAS  Google Scholar 

  25. Simoneau J, Colberg S, Thaete F, et al. Skeletal muscle glycolytic and oxidative enzyme capacities are determinants of insulin sensitivity and muscle composition in obese women. FASEB J 1995;9:273–278.

    PubMed  CAS  Google Scholar 

  26. Simoneau J, Kelley D. Altered glycolytic and oxidative capacities of skeletal muscle contribute to insulin resistance in NIDDM. J Appl Physiol 1997;83:166–171.

    PubMed  CAS  Google Scholar 

  27. Colberg S, Simoneau J-A, Thaete F, et al. Impaired FFA utilization by skeletal muscle in women with visceral obesity. J Clin Invest 1995;95:1846–1853.

    PubMed  CAS  Google Scholar 

  28. He J, Watkins S, Kelley D. Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fiber type in type 2 diabetes and obesity. Diabetes 2001;50: 817–823.

    Article  PubMed  CAS  Google Scholar 

  29. Ritov VB, Menshikova EV, Kelley DE. High-performance liquid chromatography-based methods of enzymatic analysis: electron transport chain activity in mitochondria from human skeletal muscle. Anal Biochem 2004;333:27–38.

    Article  PubMed  CAS  Google Scholar 

  30. Kelley D, He J, Menshikova E, Ritov V. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes mellitus. Diabetes 2002;51:2944–2950.

    Article  PubMed  CAS  Google Scholar 

  31. Mootha VK, Bunkenborg J, Olsen JV, et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 2003;115:629–640.

    Article  PubMed  CAS  Google Scholar 

  32. Patti VI, Butte A, Crunkhorn S, et al. Coordinated reduction in genes of oxidative metabolism in humans with insulin resistance and diabetes: potential roles of PGC1 and NRF-1. Proc Natl Acad Sci USA 2003; 100:8466–8471.

    Article  PubMed  CAS  Google Scholar 

  33. Petersen K, Dufour S, Befoy D, et al. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 2004;350:664–671.

    Article  PubMed  CAS  Google Scholar 

  34. Stump C, Short K, Bigelow M, et al. Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis and mRNA transcripts. Proc Natl Acad Science USA 2003;100:7996–8001.

    Article  CAS  Google Scholar 

  35. Shulman G. Cellular mechanisms of insulin resistance. J Clin Invest 2000;106:171–176.

    Article  PubMed  CAS  Google Scholar 

  36. Kelley D, McKolanis T, Hegazi R, et al. Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance. Am J Physiol (Endocrinol Metab) 2003;285:E906–E916.

    CAS  Google Scholar 

  37. Seppala-Lindroos A, Vehkavaara S, Hakkinen AM, et al. Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab 2002;87:3023–3028.

    Article  PubMed  CAS  Google Scholar 

  38. Goodpaster BH, He J, Watkins S, et al. Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab 2001;86:5755–5761.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Kelley, D.E. (2007). Free Fatty Acids, Insulin Resistance, and Ectopic Fat. In: Kushner, R.F., Bessesen, D.H. (eds) Treatment of the Obese Patient. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-59745-400-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-400-1_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-735-8

  • Online ISBN: 978-1-59745-400-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics