Skip to main content

Obesity and Adipokines

  • Chapter
  • 864 Accesses

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Adipose tissue (AT) is composed of adipocytes and a diverse population of nonadipocytes that are commonly referred to as stronial-vascular cells. Adipose tissue has traditionally been considered a passive storage energy depot that, indeed, does serve as a long-term reservoir for fuel stored as triglyceride. However, laboratory, clinical, and epidemiological studies over the past decade have redefined and greatly expanded our understanding of the physiological role of AT. We now appreciate that AT is an endocrine organ with important roles in maintaining whole-body energy homeostasis and systemic metabolism. This appreciation derives in large part from the identification of multiple AT-secreted factors that modulate central and peripheral processes. These include free fatty acids, which have significant effects on glucose and insulin homeostasis, as well as bioactive peptides termed adipokines. Adipokines act in an autocrine, paracrine, and/or endocrine fashion to promote metabolic homeostasis, and integrate adipose tissue, liver, muscle, and CNS physiology.

There are currently more than 50 known adipokines, as well as locally generated hormones and metabolites that, together, affect multiple physiological functions including food intake, glucose homeostasis, lipid metabolism, inflammation, vascular tone, and angiogenesis. Because they affect such diverse and important processes, regulation of adipokine secretion from AT is critically important to regulating systemic metabolism. Notably, increased AT mass (as in obesity) induces characteristic qualitative and quantitative changes in adipose tissue metabolism and adipokine secretion. These changes are now implicated in the development of metabolic syndrome and its progression to more severe obesity-associated pathologies, including type 2 diabetes and cardiovascular disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr 2004;92(3):347–355.

    PubMed  CAS  Google Scholar 

  2. Gavrilova O, Marcus-Samuels B, Graham D, et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Invest 2000;105:271–278.

    PubMed  CAS  Google Scholar 

  3. Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature 1994;372(6505):425–432.

    PubMed  CAS  Google Scholar 

  4. Havel P, Kasim-Karakas S, Dubuc G, et al. Gender differences in plasma leptin concentrations. Nat Vied 1996;2:949–950.

    CAS  Google Scholar 

  5. Halaas J, Gajiwala K, Maffei M, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 1995;269:543–546.

    PubMed  CAS  Google Scholar 

  6. Pelleymounter MA, Cullen MJ, Baker MB, et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 1995;269(5223):540–543.

    PubMed  CAS  Google Scholar 

  7. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature 1998; 395(6704):763–770.

    PubMed  CAS  Google Scholar 

  8. Farooqi IS, Matarese G, Lord GM, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest 2002; 110(8): 1093–1103.

    PubMed  CAS  Google Scholar 

  9. Bjorbaek C, Kahn BB. Leptin signaling in the central nervous system and the periphery. Recent Prog Horm Res 2004;59:305–331.

    PubMed  CAS  Google Scholar 

  10. Minokoshi Y, Kim YB, Peroni OD, et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 2002;415(6869):339–343.

    PubMed  CAS  Google Scholar 

  11. Iglesias MA, Ye JM, Frangioudakis G, et al. AICAR administration causes an apparent enhancement of muscle and liver insulin action in insulin-resistant high-fat-fed rats. Diabetes 2002;51(10):2886–2894.

    PubMed  CAS  Google Scholar 

  12. Shimomura I, Hammer R, Ikemoto S, et al. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 1999;401:73–76.

    PubMed  CAS  Google Scholar 

  13. Oral E, Simha V, Ruiz E, et al. Leptin-replacement therapy for lipodystrophy. N Engl J Med 2002;346:570–578.

    PubMed  CAS  Google Scholar 

  14. Javor ED, Cochran EK, Musso C, et al. Long-term efficacy of leptin replacement in patients with generalized lipodystrophy. Diabetes 2005;54(7): 1994–2002.

    PubMed  CAS  Google Scholar 

  15. Farooqi IS. Leptin and the onset of puberty: insights from rodent and human genetics. Semin Reprod Med 2002;20(2): 139–144.

    PubMed  Google Scholar 

  16. Heymsfield S, Greenberg A, Fujoka K, et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose escalation trial. JAMA 1999;282:1568–1575.

    PubMed  CAS  Google Scholar 

  17. Rosenbaum M, Goldsmith R, Bloomfield D, et al. Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. J Clin Invest 2005; 115(12): 3579–3586.

    PubMed  CAS  Google Scholar 

  18. Rosenbaum M, Murphy EM, Heymsfield SB, et al. Low dose leptin administration reverses effects of sustained weight-reduction on energy expenditure and circulating concentrations of thyroid hormones. J Clin Endocrinol Metab 2002;87(5):2391–2394.

    PubMed  CAS  Google Scholar 

  19. Nakano Y, Tobe T, Choi-Miura NH, et al. Isolation and characterization of GBP28, a novel gelatinbinding protein purified from human plasma. J Biochem (Tokyo) 1996;120(4):803–812.

    CAS  Google Scholar 

  20. Scherer PE, Williams S, Fogliano M, et al. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Cheni 1995;270(45):26,746–26,749.

    CAS  Google Scholar 

  21. Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem 1996;271(18): 10,697–10,703.

    CAS  Google Scholar 

  22. Maeda K, Okubo K, Shimomura I, et al. cDNA cloning and expression of a novel adipose specific collagen-like factor, apMl (AdiPose Most abundant Gene transcript 1). Biochem Biophys Res Commun 1996;221(2):286–289.

    PubMed  CAS  Google Scholar 

  23. Chandran M, Phillips SA, Ciaraldi T, et al. Adiponectin: more than just another fat cell hormone? Diabetes Care 2003;26(8):2442–2450.

    PubMed  CAS  Google Scholar 

  24. Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 2005; 115(5): 911–919; quiz 920.

    PubMed  CAS  Google Scholar 

  25. Matsuzawa Y, Funahashi T, Kihara S, etal. Adiponectin and metabolic syndrome. Arterioseler Thromb Vasc Biol 2004;24(l):29–33.

    CAS  Google Scholar 

  26. Bottner A, Kratzsch J, Muller G, et al. Gender differences of adiponectin levels develop during the progression of puberty and are related to serum androgen levels. J Clin Endocrinol Metab 2004;89(8):4053–4061.

    PubMed  Google Scholar 

  27. Trujillo ME, Scherer PE. Adiponectin—journey from an adipocyte secretory protein to biomarker of the metabolic syndrome. J Intern Med 2005;257(2): 167–175.

    PubMed  CAS  Google Scholar 

  28. Fisher FF, Trujillo ME, Hanif W, et al. Serum high molecular weight complex of adiponectin correlates better with glucose tolerance than total serum adiponectin in Indo-Asian males. Diabetologia 2005;48(6):1084–1087.

    PubMed  CAS  Google Scholar 

  29. Freubis J, Tsao T-S, Javorschi S, et al. Proteolytic cleavage product of 30-kDaaidpocyte complementrelated protein increases in fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci USA 2001;98:2005–2010.

    Google Scholar 

  30. Tomas E, Tsao T-S, Saha AK, et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: Acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. PNAS 2002;99(25): 16,309–16,313.

    CAS  Google Scholar 

  31. Combs TP, Berg AH, Obici S, et al. Endogenous glucose production is inhibited by the adiposederived protein Acrp30. J Clin Invest 2001;108(12): 1875–1881.

    PubMed  CAS  Google Scholar 

  32. Bouskila M, Pajvani UB, Scherer PE. Adiponectin: a relevant player in PPARgamma-agonist-mediated improvements in hepatic insulin sensitivity? Int J Obes (Lond) 2005;29Suppl 1:S17–S23.

    CAS  Google Scholar 

  33. Nawrocki AR, Rajala MW, Tomas E, et al. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor gammaagonists. J Biol Chem 2006;281(5):2654–2660.

    PubMed  CAS  Google Scholar 

  34. Arita Y, Kihara S, Ouchi N, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Bioc Biophys Res Commun 1999;2:79–83.

    Google Scholar 

  35. Kissebah AH, Sonnenberg GE, Myklebust J, et al. Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome. Proc Natl Acad Sci USA 2000;97(26): 14,478–14,483.

    CAS  Google Scholar 

  36. Flara K, Boutin P, Mori Y, et al. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population. Diabetes 2002;51(2):536–540.

    Google Scholar 

  37. Wang H, Zhang H, Jia Y, et al. Adiponectin receptor I gene (ADIPORl) as a candidate for type 2 diabetes and insulin resistance. Diabetes 2004;53(8):2132–2136.

    PubMed  CAS  Google Scholar 

  38. Bouatia-Naji N, Meyre D, Lobbens S, et al. ACDC/adiponectin polymorphisms are associated with severe childhood and adult obesity. Diabetes 2006;55(2):545–550.

    PubMed  CAS  Google Scholar 

  39. Diez JJ, Iglesias P. The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endocrinol 2003;148(3):293–300.

    PubMed  CAS  Google Scholar 

  40. Yang WS, Lee WJ, Funahashi T, et al. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab 2001;86(8):3815–3819.

    PubMed  CAS  Google Scholar 

  41. Despres JP, Golay A, Sjostrom L. Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 2005;353(20):2121–2134.

    PubMed  CAS  Google Scholar 

  42. Lindsay RS, Funahashi T, Hanson RL, et al. Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet 2002;360(9326):57–58.

    PubMed  CAS  Google Scholar 

  43. Spranger J, Kroke A, Mohlig M, et al. Adiponectin and protection against type 2 diabetes mellitus. Lancet 2003;361(9353):226–228.

    PubMed  CAS  Google Scholar 

  44. Yamauchi T, Oike Y, Kamon J, et al. Increased insulin sensitivity despite lipodystrophy in Crebbp heterozygous mice. Nat Genet 2002;30(2):221–226.

    PubMed  CAS  Google Scholar 

  45. Pellme F, Smith U, Funahashi T, et al. Circulating adiponectin levels are reduced in nonobese but insulin-resistant first-degree relatives of type 2 diabetic patients. Diabetes 2003;52(5): 1182–1186.

    PubMed  CAS  Google Scholar 

  46. Kern PA, Di Gregorio GB, Lu T, et al. Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes 2003;52(7): 1779–1785.

    PubMed  CAS  Google Scholar 

  47. Hotta K, Funahashi T, Bodkin NL, et al. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes 2001;50(5):1126–1133.

    PubMed  CAS  Google Scholar 

  48. Yamamoto Y, Hirose H, Saito I, et al. Adiponectin, an adipocyte-derived protein, predicts future insulin resistance: two-year follow-up study in Japanese population. J Clin Endocrinol Metab 2004;89(l):87–90.

    PubMed  CAS  Google Scholar 

  49. Maeda N, Shimomura I, Kishida K, et al. Diet-induced insulin resistance in mice lacking adiponectin/ ACRP30. Nat Med 2002;8(7):731–737.

    PubMed  CAS  Google Scholar 

  50. Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001;7(8):941–946.

    PubMed  CAS  Google Scholar 

  51. Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002;8(l 1): 1288–1295.

    PubMed  CAS  Google Scholar 

  52. Berg AH, Combs TP, Du X, et al. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 2001;7(8):947–953.

    PubMed  CAS  Google Scholar 

  53. Pajvani UB, Hawkins M, Combs TP, et al. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J Biol Chem 2004;279(13): 12,152–12,162.

    CAS  Google Scholar 

  54. Tsuchida A, Yamauchi T, Takekawa S, et al. Peroxisome proliferator-activated receptor (PPAR) a activation increases adiponectin receptors and reduces obesity-related inflammation in adipose tissue: comparison of activation of PPARα, PPARγ, and their combination. Diabetes 2005;54(12):3358–3370.

    PubMed  CAS  Google Scholar 

  55. Cnop M, Havel PJ, Utzschneider KM, et al. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia 2003;46(4): 459–469.

    PubMed  CAS  Google Scholar 

  56. Chan DC, Watts GF, Ng TW, et al. Adiponectin and other adipocytokines as predictors of markers of triglyceride-rich lipoprotein metabolism. Clin Chem 2005;51(3):578–585.

    PubMed  CAS  Google Scholar 

  57. Iwashima Y, Katsuya T, Ishikawa K, et al. Hypoadiponectinemia is an independent risk factor for hypertension. Hypertension 2004;43(6): 1318–1323.

    PubMed  CAS  Google Scholar 

  58. Kumada M, Kihara S, Sumitsuji S, et al. Association of hypoadiponectinemia with coronary artery disease in men. Arterioscler Thromb Vasc Biol 2003;23(l):85–89.

    PubMed  CAS  Google Scholar 

  59. Ouchi N, Kihara S, Arita Y, et al. Novel modulator for endothelial adhesion molecules: adipocytederived plasma protein adiponectin. Circulation 1999; 100(25):2473–2476.

    PubMed  CAS  Google Scholar 

  60. Okamoto Y, Kihara S, Ouchi N, et al. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation 2002; 106(22):2767–2770.

    PubMed  CAS  Google Scholar 

  61. Shibata R, Sato K, Pimentel DR, et al. Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK-and COX-2-dependent mechanisms. Nat Med 2005;11(10): 1096–1103.

    PubMed  CAS  Google Scholar 

  62. Chen H, Montagnard M, Funahashi T, et al. Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem 2003;278(45):45,021–45,026.

    CAS  Google Scholar 

  63. Goldstein BJ, Scalia R. Adiponectin: a novel adipokine linking adipocytes and vascular function. J Clin Endocrinol Metab 2004;89(6):2563–2568.

    PubMed  CAS  Google Scholar 

  64. Wong GW, Wang J, Hug C, et al. A family of Acrp30/adiponectin structural and functional paralogs. Proc Natl Acad Sei USA 2004;101(28): 10,302–10,307.

    CAS  Google Scholar 

  65. Hotamisligil GS, Spiegelman BM. Tumor necrosis factor a: A key component of the obesity-diabetes link. Diabetes 1994;43:1271–1278.

    PubMed  CAS  Google Scholar 

  66. Beutler B, Greenwald D, Hulmes J, et al. Identifty of tumor necrosis factor and the macrophagesecreted factor cachetin. Nature 1985;316:552–554.

    PubMed  CAS  Google Scholar 

  67. Hotamisligil GS, Arner P, Caro JF, et al. Increased adipose tissue expression of tumor necrosis factoralpha in human obesity and insulin resistance. J Clin Invest 1995;95(5):2409–2415.

    PubMed  CAS  Google Scholar 

  68. Kern PA, Saghizadeh M, Ong JM, et al. The expression of tumor necrosis factor in human adipose tissue: regulation by obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest 1995;95:2111–2119.

    PubMed  CAS  Google Scholar 

  69. Kern PA, Ranganathan S, Li C, et al. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 2001;280(5):E745–E751.

    PubMed  CAS  Google Scholar 

  70. Weisberg SP, McCann D, Desai M, et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003;112(12): 1796–1808.

    PubMed  CAS  Google Scholar 

  71. Xu H, Barnes G, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003; 112:1821–1830.

    PubMed  CAS  Google Scholar 

  72. Fasshauer M, Kralisch S, Klier M, et al. Adiponectin gene expression and secretion is inhibited by interleukin-6 in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2003;301(4): 1045–1050.

    PubMed  CAS  Google Scholar 

  73. Wang B, Jenkins JR, Trayhurn P. Expression and secretion of inflammation-related adipokines by human adipocytes differentiated in culture: integrated response to TNF-alpha. Am J Physiol Endocrinol Metab 2005;288(4):E731–E740.

    PubMed  CAS  Google Scholar 

  74. Weisberg SP, Hunter D, Huber R, et al. CCR2 modulates inflammatory and metabolic effects of highfat feeding. J Clin Invest 2006;116(l): 115–124.

    PubMed  CAS  Google Scholar 

  75. Cinti S, Mitchell G, Barbatelli G, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 2005;46(11):2347–2355.

    PubMed  CAS  Google Scholar 

  76. Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 1997;46: 3–10.

    PubMed  CAS  Google Scholar 

  77. Shulman G. Cellular mechanism of insulin resistance. J Clin Invest 2000; 196:171–176.

    Google Scholar 

  78. Carr DB, Utzschneider KM, Hull RL, et al. Intra-abdominal fat i s a major determinant of the National Cholesterol Education Program Adult Treatment Panel III criteria for the metabolic syndrome. Diabetes 2004;53(8):2087–2094.

    PubMed  CAS  Google Scholar 

  79. Gastaldelli A, Miyazaki Y, Pettiti M, et al. Metabolic effects of visceral fat accumulation in type 2 diabetes. J Clin Endocrinol Metab 2002;87:5098–5103.

    PubMed  CAS  Google Scholar 

  80. Miyazaki Y, Mahankali A, Matsuda M, et al. Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab 2002;87(6):2784–2791.

    PubMed  CAS  Google Scholar 

  81. Fain J, Bahouth S, Madan A. TNF-alpha release by the nonfat cells of human adipose tissue. Int J Obes Relat Metab Discord 2004;28:616–622.

    CAS  Google Scholar 

  82. Gerhardt CC, Romero IA, Cancello R, et al. Chemokines control fat accumulation and leptin secretion by cultured human adipocytes. Mol Cell Endocrinol 2001;175(l-2):81–92.

    PubMed  CAS  Google Scholar 

  83. Moller DE. Potential role of TNF-alpha in the pathogenesis of insulin resistance and type 2 diabetes. Trends Endocrinol Metab 2000; 11(6):212–217.

    PubMed  CAS  Google Scholar 

  84. Souza SC, Yamamoto M, Franciosa M, et al. BRL blocks the lipolytic actions of tumor necrosis factoralpha (TNF-a): a potential new insulin-sensitizing mechanism for the thiazolidinediones. Diabetes 1998;47:691–695.

    PubMed  CAS  Google Scholar 

  85. Zhang H, Halbleib M, Ahmed F, et al. Tumor necrosis factor-alpha stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal related kinase and elevated extracelular related kinase and elevation of intracellular cAMP. Diabetes 2002;51:2929–2935.

    PubMed  CAS  Google Scholar 

  86. Hotamisligil GS, Murray DL, Choy LN, et al. TNF-a inhibits signaling from insulin receptor. Proc Natl Acad Sci USA 1994;91:4854–4858.

    PubMed  CAS  Google Scholar 

  87. Uysal K, Wiesbrock S, Marino M, et al. Protection from obesity-linked insulin resistance in mice lacking TNF-a function. Nature 1997;389:610–614.

    PubMed  CAS  Google Scholar 

  88. Mohamed-Ali V, Goodrick S, Rawesh A, et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab 1997;82(12):4196–4200.

    PubMed  CAS  Google Scholar 

  89. Ofei F, Hurel S, Newkirk J, et al. Effects of an engineered human anti-TNF-alpha antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes 1996;45(7):881–885.

    PubMed  Google Scholar 

  90. Vgontzas A, Zoumakies E, Lin H, et al. Marked decrease in sleepiness in patients with sleep apnez by etanercept, a tumor necrosis factor-alpha antagonist. J Clin Endocrinol Metab 2004;89:4409–4412.

    PubMed  CAS  Google Scholar 

  91. van Hall G, Steensberg A, Sacchetti M, et al. Interleukin-6 stimulates lipolysis and fat oxidation in humans. J Clin Endocrinol Metab 2003;88(7):3005–3010.

    PubMed  Google Scholar 

  92. Steensberg A, van Hall G, Osada T, et al. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol 2000;529 Pt 1:237–242.

    PubMed  CAS  Google Scholar 

  93. Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab 1998;83(3):847–850.

    PubMed  CAS  Google Scholar 

  94. Rotter V, Nagaev I, Smith U. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulinresistant subjects. J Biol Chem 2003;278(46):45,777–45,784.

    CAS  Google Scholar 

  95. Kristiansen OP, Mandrup-Poulsen T. Interleukin-6 and diabetes: the good, the bad, or the indifferent? Diabetes 2005;54Suppl 2:S114–S124.

    PubMed  CAS  Google Scholar 

  96. Fernandez-Real JM, Ricart W. Insulin resistance and chronic cardiovascular inflammatory syndrome. Endocr Rev 2003;24(3):278–301.

    PubMed  CAS  Google Scholar 

  97. Trujillo ME, Sullivan S, Harten I, et al. Interleukin-6 regulates human adipose tissue lipid metabolism and leptin production in vitro. J Clin Endocrinol Metab 2004;89(11):5577–5582.

    PubMed  CAS  Google Scholar 

  98. Rieusset J, Bouzakri K, Chevillotte E, et al. Suppressor of cytokine signaling 3 expression and insulin resistance in skeletal muscle of obese and type 2 diabetic patients. Diabetes 2004;53(9):2232–2241.

    PubMed  CAS  Google Scholar 

  99. Senn JJ, Klover PJ, Nowak IA, et al. Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J Biol Chem 2003;278(16): 13740–13746.

    PubMed  CAS  Google Scholar 

  100. Kim HJ, Higashimori T, Park SY, et al. Differential effects of interleukin-6 and-10 on skeletal muscle and liver insulin action in vivo. Diabetes 2004;53(4):1060–1067.

    PubMed  CAS  Google Scholar 

  101. Lindmark E, Diderholm E, Wallentin L, et al. Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: effects of an early invasive or noninvasive strategy. JAMA 2001;286(17):2107–2113.

    PubMed  CAS  Google Scholar 

  102. Pickup JC, Mattock MB, Chusney GD, et al. NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia 1997;40(11): 1286–1292

    PubMed  CAS  Google Scholar 

  103. Stouthard JM, Romijn JA, Van der Poll T, et al. Endocrinologic and metabolic effects of interleukin-6 in humans. Am J Physiol 1995;268(5 Pt 1):E813–E819.

    PubMed  CAS  Google Scholar 

  104. Vgontzas A, Papanicolaou D, Bixler E, et al. Sleep apnea and daytime sleepiness and fatigue: relation to visceral obesity, insulin resistance, and hypercytokinemia. J Clin Endocrinol Metab 2000;85:1151–1158.

    PubMed  CAS  Google Scholar 

  105. Vgontzas A, Papnicoaou D, Bixler E, et al. Elevation of plasma cytokines in disorders of excessive daytime sleepiness: role of sleep disturbance and obesity. J Clin Endocrinol Metab 1997;82:1313–1316.

    PubMed  CAS  Google Scholar 

  106. Vgontzas A, Papnicolaou D, Bixler E, et al. Orcadian interleukin-6 secretion and quantity and depth of sleep. J Clin Endocrinol Metab 2000;84:2603–2607.

    Google Scholar 

  107. Vgontzas AN, Papanicolaou DA, Bixler EO, et al. Sleep apnea and daytime sleepiness and fatigue: relation to visceral obesity, insulin resistance, and hypercytokinemia. J Clin Endocrinol Metab 2000;85(3):1151–1158.

    PubMed  CAS  Google Scholar 

  108. Vgontzas AN, Bixler EO, Chrousos GP. Sleep apnea is a manifestation of the metabolic syndrome. Sleep Med Rev 2005;9(3):211–224.

    PubMed  Google Scholar 

  109. Boisvert WA. Modulation of atherogenesisbychemokines. Trends Cardiovasc Med 2004;14(4): 161–165.

    PubMed  CAS  Google Scholar 

  110. Wellen KE, Hotamisligil GS. Obesity-induced inflammatory changes in adipose tissue. J Clin Invest 2003;112(12): 1785–1788.

    PubMed  CAS  Google Scholar 

  111. Inoue S, Egashira K, Ni W, et al. Anti-monocyte chemoattractant protein-1 gene therapy limits progression and destabilization of established atherosclerosis in apolipoprotein E-knockout mice. Circulation 2002;106(21):2700–2706.

    PubMed  CAS  Google Scholar 

  112. Juge-Aubry CE, Henrichot E, Meier CA. Adipose tissue: aregulator of inflammation. Best Pract Res Clin Endocrinol Metab 2005; 19(4):547–566.

    PubMed  CAS  Google Scholar 

  113. Sartipy P, Loskutoff DJ. Expression profiling identifies genes that continue to respond to insulin in adipocytes made insulin-resistant by treatment with TNF-alpha. J Biol Chem 2003;278(52):52,298–52,306.

    CAS  Google Scholar 

  114. Sartipy P, Loskutoff DJ. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci USA 2003;100(12):7265–7270.

    PubMed  CAS  Google Scholar 

  115. Christiansen T, Richelsen B, Bruun JM. Monocyte chemoattractant protein-1 is produced in isolated adipocytes, associated with adiposity and reduced after weight loss in morbid obese subjects. Int J Obes (Lond) 2005;29(l): 146–150.

    CAS  Google Scholar 

  116. Nomura S, Shouzu A, Omoto S, et al. Significance of chemokines and activated platelets in patients with diabetes. Clin Exp Immunol 2000;121:437–443.

    PubMed  CAS  Google Scholar 

  117. Ni W, Egashira K, Kitamoto S, et al. New anti-monocyte chemoattractant protein-1 gene therapy attenuates atherosclerosis i n apolipoprotein E-knockout mice. Circulation 2001; 103(16): 2096–2101.

    PubMed  CAS  Google Scholar 

  118. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 2004;89(6): 2548–2556.

    PubMed  CAS  Google Scholar 

  119. Samad F, Uysal KT, Wiesbrock SM, et al. Tumor necrosis factor alpha is a key component in the obesity-linked elevation of plasminogen activator inhibitor 1. Proc Natl Acad Sci USA 1999;96(12): 6902–6907.

    PubMed  CAS  Google Scholar 

  120. Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 2000;21(6):697–738.

    PubMed  CAS  Google Scholar 

  121. Alessi MC, Bastelica D, Morange P, et al. Plasminogen activator inhibitor 1, transforming growth factor-betal, and BMI are closely associated in human adipose tissue during morbid obesity. Diabetes 2000;49(8): 1374–1380.

    PubMed  CAS  Google Scholar 

  122. Ma LJ, Mao SL, Taylor KL, et al. Prevention of obesity and insulin resistance in mice lacking plasminogen activator inhibitor 1. Diabetes 2004;53(2):336–346.

    PubMed  CAS  Google Scholar 

  123. Schafer K, Fujisawa K, Konstantinides S, et al. Disruption of the plasminogen activator inhibitor 1 gene reduces the adiposity and improves the metabolic profile of genetically obese and diabetic ob/ ob mice. FASEB J 2001;15(10): 1840–1842.

    PubMed  CAS  Google Scholar 

  124. Festa A, D’Agostino RJ, Haffner S, The Insulin Resistance Atherosclerosis Study. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes; the insulin resistance atherosclerosis study. Diabetes 2002;51:1131–1137.

    PubMed  CAS  Google Scholar 

  125. Mertens I, Van Gaal LF. Obesity, haemostasis and the fibrinolytic system. Obes Rev 2002;3(2):85–101.

    PubMed  CAS  Google Scholar 

  126. Samad F, Pandey M, Bell PA, Loskutoff DJ. Insulin continues to induce plasminogen activator inhibitor 1 gene expression in insulin-resistant mice and adipocytes. Mol Med 2000;6(8):680–692.

    PubMed  CAS  Google Scholar 

  127. Skurk T, Hauner H. Obesity and impaired fibrinolysis: role of adipose production of plasminogen activator inhibitor-1. Int J Obes Relat Metab Disord 2004;28(11): 1357–1364.

    PubMed  CAS  Google Scholar 

  128. Juhan-Vague I, Alessi M-C, Mavri A, et al. Plasminogen activator inhibitor-1, inflammation, obesity, insulin resistance and vascular risk. J Thromb Haemost 2003; 1(7): 1575–1579.

    PubMed  CAS  Google Scholar 

  129. Siiteri PK. Adipose tissue as a source of hormones. Am J Clin Nutr 1987;45(1 Suppl):277–282.

    PubMed  CAS  Google Scholar 

  130. Seckl JR, Walker BR. Minireview: 11beta-hydroxysteroid dehydrogenase type 1-a tissue-specific amplifier of glucocorticoid action. Endocrinology 2001;142(4): 1371–1376.

    PubMed  CAS  Google Scholar 

  131. Rask E, Olsson T, Soderberg S, et al. Tissue-specific dysregulation of cortisol metabolism in human obesity. J Clin Endocrinol Metab 2001;86(3): 1418–1421.

    PubMed  CAS  Google Scholar 

  132. Masuzaki H, Paterson J, Shiyama H, et al. A transgenic model of visceral obesity and the metabolic syndrome. Science 2001;294:2166–2170.

    PubMed  CAS  Google Scholar 

  133. Kershaw EE, Morton NM, Dhillon H, et al. Adipocyte specific glucocorticoid inactivation protects against diet-induced obesity. Diabetes 2005;54:1023–1031.

    PubMed  CAS  Google Scholar 

  134. Morton N, Paterson J, Masuzaki H, et al. Novel adipose tissue-mediated resistance to diet-induced visceral obesity in 11 beta-hydroxysteroid dehydrogenase type 1-deficient mice. Diabetes 2004;53:931–938.

    PubMed  CAS  Google Scholar 

  135. Walker BR, Connacher AA, Lindsay RM, et al. Carbenoxolone increases hepatic insulin sensitivity in man: a novel role for 11-oxosteroid reductase in enhancing glucocorticoid receptor activation. J Clin Endocrinol Metab 1995;80(11):3155–3159.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Rogers, N.H., Obin, M.S., Greenherg, A.S. (2007). Obesity and Adipokines. In: Kushner, R.F., Bessesen, D.H. (eds) Treatment of the Obese Patient. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-59745-400-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-400-1_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-735-8

  • Online ISBN: 978-1-59745-400-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics