Skip to main content

Weight-Loss Drugs

Current and on the Horizon

  • Chapter
Treatment of the Obese Patient

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Obesity is increasing in prevalence and its medical liabilities are largely related to central adiposity and the associated insulin resistance. The present drugs available for the treatment of obesity and metabolic syndrome are few in number and limited in efficacy. This chapter reviews the drugs approved by the US Food and Drug Administration (FDA) to treat obesity, drugs approved by the FDA for other indications than weight loss, drugs in the late development process that have not been approved by the FDA, drugs in earlier stages of drug development for which clinical information is limited, drugs that have been dropped from development, and new potential drug targets for which essentially no clinical data yet exist. We also review the nonprescription products sold for the treatment of obesity and metabolic syndrome. The developmental pipeline of drugs for the treatment of obesity and the metabolic syndrome is rich. Because drugs to treat obesity are being developed in an era characterized by more sophisticated tools for drug development than existed when hypertension drugs were being developed, much faster progress in developing safe and effective drugs for obesity and metabolic syndrome is anticipated. With safe and effective drugs available, we anticipate that the chronic treatment of obesity with weight loss medication will become as well-accepted and prevalent as is the chronic drug treatment of hypertension and diabetes in the medical practice of today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature 1994;372(6505):425–432.

    PubMed  CAS  Google Scholar 

  2. Halaas JL, Gajiwala KS, Maffei M, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 1995;269(5223):543–546.

    PubMed  CAS  Google Scholar 

  3. NIH Consensus Development Conference Statement. Health Implications of Obesity. 1985.

    Google Scholar 

  4. Puhl RM, Brownell KD. Psychosocial origins of obesity stigma: toward changing a powerful and pervasive bias. Obes Rev 2003;4(4):213–227.

    PubMed  CAS  Google Scholar 

  5. Li Z, Maglione M, Tu W, et al. Meta-analysis: pharmacologic treatment of obesity. Ann Intern Med 2005;142(7):532–546.

    PubMed  CAS  Google Scholar 

  6. Anonymous. Dexfenfluramine for obesity. Med Lett Drugs Ther 1996;38(979):64–65.

    Google Scholar 

  7. Yanovski SZ, Yanovski JA. Obesity. N Engl J Med 2002;346(8):591–602.

    PubMed  CAS  Google Scholar 

  8. Bray GA, Greenway FL. Current and potential drugs for treatment of obesity. Endocr Rev 1999;20(6): 805–875.

    PubMed  CAS  Google Scholar 

  9. Snow V, Barry P, Fitterman N, et al. Pharmacologic and surgical management of obesity in primary care: a clinical practice guideline from the American College of Physicians. Ann Intern Med 2005;142(7):525–531.

    PubMed  Google Scholar 

  10. Apfelbaum M, Vague P, Ziegler O, et al. Long-term maintenance of weight loss after a very-low-calorie diet: a randomized blinded trial of the efficacy and tolerability of sibutramine. Am J Med 1999;106(2): 179–184.

    PubMed  CAS  Google Scholar 

  11. Hauner H, Meier M, Wendland G, et al. Weight reduction by sibutramine in obese subjects in primary care medicine: the SAT Study. Exp Clin Endocrinol Diabetes 2004; 112(4): 201–207.

    PubMed  CAS  Google Scholar 

  12. McNulty SJ, Ur E, Williams G. A randomized trial of sibutramine in the management of obese type 2 diabetic patients treated with metformin. Diabetes Care 2003;26(l): 125–131.

    PubMed  CAS  Google Scholar 

  13. Davis JL. Use of sibutramine hydrochloride monohydrate in the treatment of the painful peripheral neuropathy of diabetes. Diabetes Care 2000;23(10): 1594–1595.

    PubMed  CAS  Google Scholar 

  14. Bray GA, Blackburn GL, Ferguson JM, et al. Sibutramine produces dose-related weight loss. Obes Res 1999;7(2): 189–198.

    PubMed  CAS  Google Scholar 

  15. James WP, Astrup A, Finer N, et al. Effect of sibutramine on weight maintenance after weight loss: a randomised trial. STORM Study Group. Sibutramine Trial of Obesity Reduction and Maintenance. Lancet 2000;356(9248): 2119–2125.

    PubMed  CAS  Google Scholar 

  16. Wirth A, Krause J. Long-term weight loss with sibutramine: a randomized controlled trial. JAMA 2001;286(11):1331–1339.

    PubMed  CAS  Google Scholar 

  17. Sramek JJ, Leibowitz MT, Weinstein SP, et al. Efficacy and safety of sibutramine for weight loss in obese patients with hypertension well controlled by beta-adrenergic blocking agents: a placebocontrolled, double-blind, randomised trial. J Hum Hypertens 2002;16(l): 13–19.

    PubMed  CAS  Google Scholar 

  18. McMahon FG, Fujioka K, Singh BN, et al. Efficacy and safety of sibutramine in obese white and African American patients with hypertension: a 1-year, double-blind, placebo-controlled, multicenter trial. Arch Intern Med 2000;160(14):2185–2191.

    PubMed  CAS  Google Scholar 

  19. Vettor R, Serra R, Fabris R, et al. Effect of sibutramine on weight management and metabolic control in type 2 diabetes: a meta-analysis of clinical studies. Diabetes Care 2005;28(4):942–949.

    PubMed  CAS  Google Scholar 

  20. Finer N, Bloom SR, Frost GS, et al. Sibutramine is effective for weight loss and diabetic control in obesity with type 2 diabetes: a randomised, double-blind, placebo-controlled study. Diabetes Obes Metab 2000;2(2): 105–112.

    PubMed  CAS  Google Scholar 

  21. Fujioka K, Seaton TB, Rowe E, et al. Weight loss with sibutramine improves glycaemic control and other metabolic parameters in obese patients with type 2 diabetes mellitus. Diabetes Obes Metab 2000;2(3): 175–187.

    PubMed  CAS  Google Scholar 

  22. Wadden TA, Berkowitz RI, Sarwer DB, et al. Benefits of lifestyle modification in the pharmacologie treatment of obesity: a randomized trial. Arch Intern Med 2001;161(2):218–227.

    PubMed  CAS  Google Scholar 

  23. Berkowitz RI, Wadden TA, Tershakovec AM, et al. Behavior therapy and sibutramine for the treatment of adolescent obesity: a randomized controlled trial. JAMA 2003;289(14): 1805–1812.

    PubMed  CAS  Google Scholar 

  24. Godoy-Matos A, Carraro L, Vieira A, et al. Treatment of obese adolescents with sibutramine: a randomized, double-blind, controlled study. J Clin Endocrinol Metab 2005;90(3): 1460–1465.

    PubMed  CAS  Google Scholar 

  25. Berkowitz RI, Fujioka K, Daniels SR, et al. Effects of sibutramine treatment in obese adolescents: aaaa randommmized trial. Ann Inst Med 2006; 145:81–90.

    CAS  Google Scholar 

  26. Sjostrom L, Rissanen A, Andersen T, et al. Randomised placebo-controlled trial of orlistat for weight loss and prevention of weight regain in obese patients. European Multicentre Orlistat Study Group. Lancet 1998;352(9123): 167–172.

    CAS  Google Scholar 

  27. Davidson MH, Hauptman J, DiGirolamo M, et al. Weight control and risk factor reduction in obese subjects treated for 2 years with orlistat: a randomized controlled trial. JAMA 1999;281(3):235–242.

    PubMed  CAS  Google Scholar 

  28. Rossner S, Sjostrom L, Noack R, et al. Weight loss, weight maintenance, and improved cardiovascular risk factors after 2 years treatment with orlistat for obesity. European Orlistat Obesity Study Group. Obes Res 2000;8(l):49–61.

    CAS  Google Scholar 

  29. Hauptman J, Lucas C, Boldrin MN, et al. Orlistat in the long-term treatment of obesity in primary care settings. Arch Fam Med 2000;9(2): 160–167.

    PubMed  CAS  Google Scholar 

  30. Torgerson JS, Hauptman J, Boldrin MN, et al. XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care 2004;27(l): 155–161.

    PubMed  CAS  Google Scholar 

  31. Hollander PA, Elbein SC, Hirsch IB, et al. Role of orlistat in the treatment of obese patients with type 2 diabetes. A 1-year randomized double-blind study. Diabetes Care 1998;21(8): 1288–1294.

    PubMed  CAS  Google Scholar 

  32. Kelley DE, Bray GA, Pi-Sunyer EX, et al. Clinical efficacy of orlistat therapy in overweight and obese patients with insulin-treated type 2 diabetes: a 1-year randomized controlled trial. Diabetes Care 2002;25(6): 1033–1041.

    PubMed  CAS  Google Scholar 

  33. Miles JM, Leiter L, Hollander P, et al. Effect of orlistat in overweight and obese patients with type 2 diabetes treated with metformin. Diabetes Care 2002;25(7): 1123–1128.

    PubMed  CAS  Google Scholar 

  34. Heymsfield SB, Segal KR, Hauptman J, et al. Effects of weight loss with orlistat on glucose tolerance and progression to type 2 diabetes in obese adults. Arch Intern Med 2000; 160(9): 1321–1326.

    PubMed  CAS  Google Scholar 

  35. Reaven G, Segal K, Hauptman J, et al. Effect of orlistat-assisted weight loss in decreasing coronary heart disease risk in patients with syndrome X. Am J Cardiol 2001;87(7):827–831.

    PubMed  CAS  Google Scholar 

  36. Mittendorfer B, Ostlund REJr, Patterson BW, et al. Orlistat inhibits dietary cholesterol absorption. Obes Res 2001;9(10):599–604.

    PubMed  CAS  Google Scholar 

  37. Chanoine JP, Hatnpl S, Jensen C, et al. Effect of orlistat on weight and body composition in obese adolescents: a randomized controlled trial. JAMA 2005;293(23):2873–2883.

    PubMed  CAS  Google Scholar 

  38. Zhi J, Mulligan TE, Hauptman JB. Long-term systemic exposure of orlistat, a lipase inhibitor, and its metabolites in obese patients. J Clin Pharmacol 1999;39(l):41–46.

    PubMed  CAS  Google Scholar 

  39. Wadden TA, Berkowitz RI, Womble LG, et al. Effects of sibutramine plus orlistat in obese women following 1 year of treatment by sibutramine alone: a placebo-controlled trial. Obes Res 2000;8(6): 431–437.

    PubMed  CAS  Google Scholar 

  40. Munro J, MacCuish A, Wilson E, et al. Comparison of continuous and intermittent anorectic therapy in obesity. Br Med J 1968; 1:352–354.

    PubMed  CAS  Google Scholar 

  41. Goldstein DJ, Rampey AH Jr, Roback PJ, et al. Efficacy and safety of long-term fluoxetine treatment of obesity — maximizing success. Obes Res 1995;3Suppl 4:481S–490S.

    PubMed  CAS  Google Scholar 

  42. Gadde KM, Parker CB, Maner LG, et al. Bupropion for weight loss: an investigation of efficacy and tolerability in overweight and obese women. Obes Res 2001;9(9):544–551.

    PubMed  CAS  Google Scholar 

  43. Jain AK, Kaplan RA, Gadde KM, et al. Bupropion SR vs. placebo for weight loss in obese patients with depressive symptoms. Obes Res 2002;10(10): 1049–1056.

    PubMed  CAS  Google Scholar 

  44. Anderson JW, Greenway FL, Fujioka K, et al. Bupropion SR enhances weight loss: a48-week double-blind, placebo-controlled trial. Obes Res 2002;10(7):633–641.

    PubMed  CAS  Google Scholar 

  45. Ben-Menachem E, Axelsen M, Johanson EM, et al. Predictors of weight loss in adults with topiramatetreated epilepsy. Obes Res 2003; 11(4):556–562.

    PubMed  CAS  Google Scholar 

  46. Bray GA, Hollander P, Klein S, et al. A 6-month randomized, placebo-controlled, dose-ranging trial of topiramate for weight loss in obesity. Obes Res 2003; 11(6):722–733.

    PubMed  CAS  Google Scholar 

  47. Wilding J, Van Gaal L, Rissanen A, et al. A randomized double-blind placebo-controlled study of the long-term efficacy and safety of topiramate in the treatment of obese subjects. Int J Obes Relat Metab Disord 2004;28(11): 1399–1410.

    PubMed  CAS  Google Scholar 

  48. Astrup A, Caterson I, Zelissen P, et al. Topiramate: long-term maintenance of weight loss induced by a low-calorie diet in obese subjects. Obes Res 2004; 12(10): 1658–1669.

    PubMed  CAS  Google Scholar 

  49. Shapira NA, Goldsmith TD, McElroy SL. Treatment of binge-eating disorder with topiramate: a clinical case series. J Clin Psychiatry 2000;61(5):368–372.

    PubMed  CAS  Google Scholar 

  50. McElroy SL, Arnold LM, Shapira NA, et al. Topiramate in the treatment of binge eating disorder associated with obesity: a randomized, placebo-controlled trial. Am J Psychiatry 2003; 160(2): 255–261.

    PubMed  Google Scholar 

  51. McElroy SL, Shapira NA, Arnold LM, et al. Topiramate in the long-term treatment of binge-eating disorder associated with obesity. J Clin Psychiatry 2004;65(11): 1463–1469.

    PubMed  CAS  Google Scholar 

  52. Shapira NA, Lessig MC, Murphy TK, et al. Topiramate attenuates self-injurious behaviour in Prader-Willi syndrome. Int J Neuropsychopharmacol 2002;5(2): 141–145.

    PubMed  CAS  Google Scholar 

  53. Smathers SA, Wilson JG, Nigro MA. Topiramate effectiveness in Prader-Willi syndrome. Pediatr Neurol 2003;28(2): 130–133.

    PubMed  Google Scholar 

  54. Shapira NA, Lessig MC, Lewis MH, et al. Effects of topiramate in adults with Prader-Willi syndrome. Am J Ment Retard 2004;109(4):301–309.

    PubMed  Google Scholar 

  55. Winkelman JW. Treatment of nocturnal eating syndrome and sleep-related eating disorder with topiramate. Sleep Med 2003;4(3):243–246.

    PubMed  Google Scholar 

  56. Gadde KM, Franciscy DM, Wagner HR 2nd, et al. Zonisamide for weight loss in obese adults: a randomized controlled trial. JAMA 2003;289(14):1820–1825.

    PubMed  CAS  Google Scholar 

  57. McElroy SL, Kotwal R, Hudson JI, et al. Zonisamide in the treatment of binge-eating disorder: an open-label, prospective trial. J Clin Psychiatry 2004;65(l):50–56.

    PubMed  CAS  Google Scholar 

  58. Bray GA, Gallagher TFJr. Manifestations of hypothalamic obesity in man: a comprehensive investigation of eight patients and a reveiw of the literature. Medicine (Baltimore) 1975;54(4):301–330.

    CAS  Google Scholar 

  59. Lustig RH, Rose SR, Burghen GA, et al. Hypothalamic obesity caused by cranial insult in children: altered glucose and insulin dynamics and reversal by a somatostatin agonist. J Pediatr 1999;135(2 Pt 1): 162–168.

    PubMed  CAS  Google Scholar 

  60. Lustig RH, Hinds PS, Ringwald-Smith K, et al. Octreotide therapy of pediatric hypothalamic obesity: a double-blind, placebo-controlled trial. J Clin Endocrinol Metab 2003;88(6):2586–2892.

    PubMed  CAS  Google Scholar 

  61. Velasquez-Mieyer PA, Cowan PA, Arheart KL, et al. Suppression of insulin secretion is associated with weight loss and altered macronutrient intake and preference in a subset of obese adults. Int J Obes Relat Metab Disord 2003;27(2):219–226.

    PubMed  CAS  Google Scholar 

  62. Lustig R, Greenway F, Velasquez D, et al. Weight loss in obese adults with insulin hypersecretion treated with Sandostatin LAR Depot. Obes Res 2003;ll (Suppl):A25.

    Google Scholar 

  63. Foxx-Orenstein A, Camilleri M, Stephens D, et al. Effect of a somatostatin analogue on gastric motor and sensory functions in healthy humans. Gut 2003;52(l 1): 1555–1561.

    PubMed  CAS  Google Scholar 

  64. Tan TM, Vanderpump M, Khoo B, et al. Somatostatin infusion lowers plasma ghrelin without reducing appetite in adults with Prader-Willi syndrome. J Clin Endocrinol Metab 2004;89(8):4162–4165.

    PubMed  CAS  Google Scholar 

  65. Fontbonne A, Charles MA, Juhan-Vague I, et al. The effect of metformin on the metabolic abnormalities associated with upper-body fat distribution. BIGPRO Study Group. Diabetes Care 1996;19(9): 920–926.

    PubMed  CAS  Google Scholar 

  66. Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002;346(6):393–403.

    PubMed  CAS  Google Scholar 

  67. Ortega-Gonzalez C, Luna S, Hernandez L, et al. Responses of serum androgen and insulin resistance to metformin and pioglitazone in obese, insulin-resistant women with polycystic ovary syndrome. J Clin Endocrinol Metab 2005;90(3): 1360–1365.

    PubMed  CAS  Google Scholar 

  68. Ratner RE, Dickey R, Fineman M, et al. Amylin replacement with pramlintide as an adjunct to insulin therapy improves long-term glycaemic and weight control in Type 1 diabetes mellitus: a 1-year, randomized controlled trial. Diabet Med 2004;21(11): 1204–1212.

    PubMed  CAS  Google Scholar 

  69. Maggs D, Shen L, Strobel S, et al. Effect of pramlintide on A1C and body weight in insulin-treated African Americans and Hispanics with type 2 diabetes: a pooled post hoc analysis. Metabolism 2003;52(12): 1638–1642.

    PubMed  CAS  Google Scholar 

  70. Small CJ, Bloom SR. Gut hormones as peripheral anti obesity targets. Curr Drug Targets CNS Neurol Disord 2004;3(5):379–388.

    PubMed  CAS  Google Scholar 

  71. Greenway SE, Greenway FL 3rd, Klein S. Effects of obesity surgery on non-insulin-dependent diabetes mellitus. Arch Surg 2002;137(10):1109–1117.

    PubMed  Google Scholar 

  72. Patriti A, Facchiano E, Sanna A, et al. The enteroinsular axis and the recovery from type 2 diabetes after bariatric surgery. Obes Surg 2004; 14(6):840–848.

    PubMed  Google Scholar 

  73. Lugari R, Dei Cas A, Ugolotti D, et al. Glucagon-likepeptide 1 (GLP-1) secretion and plasma dipeptidyl peptidase IV (DPP-IV) activity in morbidly obese patients undergoing biliopancreatic diversion. Florni Metab Res 2004;36(2): 111–115.

    CAS  Google Scholar 

  74. Szayna M, Doyle ME, Betkey JA, et al. Exendin-4 decelerates food intake, weight gain, and fat deposition in Zucker rats. Endocrinology 2000;141(6): 1936–1941.

    PubMed  CAS  Google Scholar 

  75. Gedulin BR, Nikoulina SE, Smith PA, et al. Exenatide (exendin-4) improves insulin sensitivity and β-cell mass in insulin-resistant obese fa/fa Zucker rats independent of glycemia and body weight. Endocrinology 2005; 146(4):2069–2076.

    PubMed  CAS  Google Scholar 

  76. Rodriquez de Fonseca F, Navarro M, Alvarez E, et al. Peripheral versus central effects of glucagonlike peptide-1 receptor agonists on satiety and body weight loss in Zucker obese rats. Metabolism 2000;49(6): 709–717.

    Google Scholar 

  77. Kastin AJ, Akerstrom V. Entry of exendin-4 into brain is rapid but may be limited at high doses. Int J Obes Relat Metab Disord 2003;27(3):313–318.

    PubMed  CAS  Google Scholar 

  78. Edwards CM, Stanley SA, Davis R, et al. Exendin-4 reduces fasting and postprandial glucose and decreases energy intake in healthy volunteers. Am J Physiol Endocrinol Metab 2001;281(1):E155–E161.

    PubMed  Google Scholar 

  79. Fineman MS, Shen LZ, Taylor K, et al. Effectiveness of progressive dose-escalation of exenatide (exendin-4) in reducing dose-limiting side effects in subjects with type 2 diabetes. Diabetes Metab Res Rev 2004;20(5):411–417.

    PubMed  CAS  Google Scholar 

  80. Buse JB, Henry RR, Flan J, et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care 2004;27(11):2628–2635.

    PubMed  CAS  Google Scholar 

  81. Bensaid M, Gary-Bobo M, Esclangon A, et al. The cannabinoid CB1 receptor antagonist SR141716 increases Acrp30 mRNA expression in adipose tissue of obese fa/fa rats and in cultured adipocyte cells. Mol Pharmacol 2003;63(4):908–914.

    PubMed  CAS  Google Scholar 

  82. Website, http://en.sanofi-aventis.com/mvestors/p_investors.asp.

  83. Van Gaal LF, Rissanen AM, Scheen A J, et al. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 2005;365(9468): 1389–1397.

    PubMed  Google Scholar 

  84. Heymsfield SB, Greenberg AS, Fujioka K, et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA 1999;282(16): 1568–1575.

    PubMed  CAS  Google Scholar 

  85. Flukshorn CJ, Westerterp-Plantenga MS, Saris WH. Pegylated human recombinant leptin (PEG-OB) causes additional weight loss in severely energy-restricted, overweight men. Am J Clin Nutr 2003;77(4):771–776.

    Google Scholar 

  86. Oral EA, Simha V, Ruiz E, et al. Leptin-replacement therapy for lipodystrophy. N Engl J Med 2002;346(8): 570–578.

    PubMed  CAS  Google Scholar 

  87. Rosenbaum M, Murphy EM, Heymsfield SB, et al. Low dose leptin administration reverses effects of sustained weight-reduction on energy expenditure and circulating concentrations of thyroid hormones. J Clin Endocrinol Metab 2002;87(5):2391–2394.

    PubMed  CAS  Google Scholar 

  88. Anderson KD, Lambert PD, Corcoran TL, et al. Activation of the hypothalamic arcuate nucleus predicts the anorectic actions of ciliary neurotrophic factor and leptin in intact and gold thioglucoselesioned mice. J Neuroendocrinol 2003; 15(7):649–660.

    PubMed  CAS  Google Scholar 

  89. Ettinger MP, Littlejohn TW, Schwartz SL, et al. Recombinant variant of ciliary neurotrophic factor for weight loss in obese adults: a randomized, dose-ranging study. JAMA 2003;289(14): 1826–1832.

    PubMed  CAS  Google Scholar 

  90. Website, http://www.regeneron.com/.

  91. Website, http://www.metabolic.com.au/files/T5SH4035T6/ASX_%20AOD9604_result%20announce ment. pdf.

  92. Batterham RL, Cohen MA, Ellis SM, et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med 2003;349(10):941–948.

    PubMed  CAS  Google Scholar 

  93. Brandt G, Sileno A, Quay S. Intranasal peptide YY 3-36: phase 1 dose ranging and dose sequencing studies. Obes Res 2004;12 (Suppl):A28.

    Google Scholar 

  94. Wynne K, Park AJ, Small CJ, et al. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial. Diabetes 2005;54(8):2390–2395.

    PubMed  CAS  Google Scholar 

  95. Pi-Sunyer X, Kissileff HR, Thornton J, et al. C-terminal octapeptide of cholecystokinin decreases food intake in obese men. Physiol Behav 1982;29(4):627–630.

    PubMed  CAS  Google Scholar 

  96. Alemany M, Fernandez-Lopez JA, Petrobelli A, et al. [Weight loss in a patient with morbid obesity under treatment with oleoyl-estrone]. Med Clin (Bare) 2003;121(13):496–499.

    Google Scholar 

  97. Gibson WT, Ebersole BJ, Bhattacharyya S, et al. Mutational analysi s of the serotonin receptor 5HT2c in severe early-onset human obesity. Can J Physiol Pharmacol 2004;82(6):426–429.

    PubMed  CAS  Google Scholar 

  98. Nilsson BM. 5-Hydroxytryptamine 2C (HT2C) receptor agonists as potential antiobesity agents. J Med Chem 2006;49(14):4023–4034.

    PubMed  CAS  Google Scholar 

  99. Website. http://www.clinicaltrials.gov/t/show/NCT00104507?order=l.

  100. Parker E, Van Heek M, Stamford A. Neuropeptide Y receptors as targets for anti-obesity drug development: perspective and current status. Eur J Pharmacol 2002;440(2–3): 173–187.

    PubMed  CAS  Google Scholar 

  101. Levens NR, Della-Zuana O. Neuropeptide Y Y5 receptor antagonists as anti-obesity drugs. Curr Opin Investig Drugs 2003;4(10): 1198–1204.

    PubMed  CAS  Google Scholar 

  102. Poindexter GS, Bruce MA, LeBoulluec KL, et al. Dihydropyridine neuropeptide Y Y(l) receptor antagonists. Bioorg Med Chem Lett 2002;12(3):379–382.

    PubMed  CAS  Google Scholar 

  103. Kanatani A, Hata M, Mashiko S, et al. A typical Yl receptor regulates feeding behaviors: effects of a potent and selective Yl antagonist, J-115814. Mol Pharmacol 2001;59(3):501–505.

    PubMed  CAS  Google Scholar 

  104. Zahorska-Markiewicz B, Obuchowicz E, Waluga M, et al. Neuropeptide Y in obese women during treatment with adrenergic modulation drugs. Med Sci Monit 2001;7(3):403–408.

    PubMed  CAS  Google Scholar 

  105. Ludwig DS, Mountjoy KG, Tatro JB, et al. Melanin-concentrating hormone: afunctional melanocortin antagonist in the hypothalamus. Am J Physiol 1998;274(4 Pt 1):E627–E633.

    PubMed  CAS  Google Scholar 

  106. Astrand A, Bohlooly YM, Larsdotter S, et al. Mice lacking melanin-concentrating hormone receptor 1 demonstrate increased heart rate associated with altered autonomie activity. Am J Physiol Regul Integr Comp Physiol 2004;287(4):R749–R758.

    PubMed  CAS  Google Scholar 

  107. Shearman LP, Camacho RE, Sloan Stribling D, et al. Chronic MCH-1 receptor modulation alters appetite, body weight and adiposity in rats. Eur J Pharmacol 2003;475(l-3):37–47.

    PubMed  CAS  Google Scholar 

  108. Kowalski TJ, Farley C, Cohen-Williams ME, et al. Melanin-concentrating hormone-1 receptor antagonism decreases feeding by reducing meal size. Eur J Pharmacol 2004;497(l):41–47.

    PubMed  CAS  Google Scholar 

  109. Borowsky B, Durkin MM, Ogozalek K, et al. Antidepressant, anxiolytic and anorectic effects of a melanin-concentrating hormone-1 receptor antagonist. Nat Med 2002;8(8):825–830.

    PubMed  CAS  Google Scholar 

  110. Souers AJ, Gao J, Brune M, etal. Identification of 2-(4-benzyloxyphenyl)-N-[l-(2-pyrrolidin-l-yl-ethyl)-lH-indazol-6-yl]acetamide, an orally efficacious melanin-concentrating hormone receptor 1 antagonist for the treatment of obesity. J Med Chem 2005;48(5): 1318–1321.

    PubMed  CAS  Google Scholar 

  111. Handlon A, Zhou H. Melanin-concentrating hormone-1 receptor antagonists. J Med Chem 2006;49:4017–4022.

    PubMed  CAS  Google Scholar 

  112. Dunk C, Enunwa M, De La Monte S, et al. Increased fecal fat excretion in normal volunteers treated with lipase inhibitor ATL-962. Int J Obes Relat Metab Disord 2002;26 (suppl): S135.

    Google Scholar 

  113. Greenway FL. Clinical studies with phenylpropanolamine: ametaanalysis. Am J Clin Nutr 1992;55(1 Suppl):203S–205S.

    PubMed  CAS  Google Scholar 

  114. Schteingart DE. Effectiveness of phenylpropanolamine in the management of moderate obesity. lot J Obes Relat Me tab Disord 1992; 16(7): 487–493.

    CAS  Google Scholar 

  115. Kernan WN, Viscoli CM, Brass LM, et al. Phenylpropanolamine and the risk of hemorrhagic stroke. N Engl J Med 2000;343(25): 1826–1832.

    PubMed  CAS  Google Scholar 

  116. Greenway FL. The safety and efficacy of pharmaceutical and herbal caffeine and ephedrine use as a weight loss agent. Obes Rev 2001;2(3): 199–211.

    PubMed  CAS  Google Scholar 

  117. Shekelle PG, Hardy ML, Morton SC, et al. Efficacy and safety of ephedra and ephedrine for weight loss and athletic performance: a meta-analysis. JAMA 2003;289(12): 1537–1545.

    PubMed  CAS  Google Scholar 

  118. de Souza CJ, Burkey BF. Beta 3-adrenoceptor agonists as anti-diabetic and anti-obesity drugs in humans. Curr Pharm Des 2001;7(14): 1433–1449.

    Google Scholar 

  119. van Baak MA, Hul GB, Toubro S, et al. Acute effect of L-796568, a novel beta 3-adrenergic receptor agonist, on energy expenditure in obese men. Clin Pharmacol Ther 2002;71(4):272–279.

    PubMed  Google Scholar 

  120. Larsen TM, Toubro S, van Baak MA, et al. Effect of a 28-d treatment with L-796568, a novel beta(3)-adrenergic receptor agonist, on energy expenditure and body composition in obese men. Am J Clin Nutr 2002;76(4):780–788.

    PubMed  CAS  Google Scholar 

  121. Kamath V, Jones CN, Yip JC, et al. Effects of a quick-release form of bromocriptine (Ergoset) on fasting and postprandial plasma glucose, insulin, lipid, and lipoprotein concentrations in obese non-diabetic hyperinsulinemic women. Diabetes Care 1997;20(11): 1697–1701.

    PubMed  CAS  Google Scholar 

  122. Pijl H, Ohashi S, Matsuda M, et al. Bromocriptine: a novel approach to the treatment of type 2 diabetes. Diabetes Care 2000;23(8): 1154–1161.

    PubMed  CAS  Google Scholar 

  123. Meier AH, Cincotta AH, Lovell WC. Timed bromocriptine administration reduces body fat stores in obese subjects and hyperglycemia in type II diabetics. Experientia 1992;48(3):248–253.

    PubMed  CAS  Google Scholar 

  124. Cincotta AH, Meier AH. Bromocriptine (Ergoset) reduces body weight and improves glucose tolerance in obese subjects. Diabetes Care 1996;19(6):667–670.

    PubMed  CAS  Google Scholar 

  125. Nann-Vernotica E, Donny EC, Bigelow GE, et al. Repeated administration of the Dl/5 antagonist ecopipam fails to attenuate the subjective effects of cocaine. Psychopharmacology (Berl) 2001;155(4):338–347.

    CAS  Google Scholar 

  126. Bays H, Dujovne C. Anti-obesity drug development. Expert Opin Investi g Drugs 2002; 11(9): 1189–1204.

    Google Scholar 

  127. Kroeze WK, Hufeisen SJ, Popadak BA, et al. H1-histamine receptor affinity predicts short-term weight gain for typical and atypical antipsychotic drugs. Neuropsychopharmacology 2003;28(3):519–526.

    PubMed  CAS  Google Scholar 

  128. Leurs R, Bakker RA, Timmerman H, et al. The histamine H3 receptor: from gene cloning to H3 receptor drugs. Nat Rev Drug Discov 2005;4(2): 107–120.

    PubMed  CAS  Google Scholar 

  129. Nargund R, Strack A, Fong T. Melanocortin-4 receptor (MC4R) agonists for the treatment of obesity. J Med Chem 2006;49:4035–4043.

    PubMed  CAS  Google Scholar 

  130. Shu IW, Lindenberg DL, Mizuno TM, et al. The fatty acid synthase inhibitor cerulenin and feeding, like leptin, activate hypothalamic pro-opiomelanocortin (POMC) neurons. Brain Res 2003;985(l): 1–12.

    PubMed  CAS  Google Scholar 

  131. Svensson J, Lonn L, Jansson JO, et al. Two-month treatment of obese subjects with the oral growth hormone (GH) secretagogue MK-677 increases GH secretion, fat-free mass, and energy expenditure. J Clin Endocrinol Metab 1998;83(2):362–369.

    PubMed  CAS  Google Scholar 

  132. Morton NM, Paterson JM, Masuzaki H, et al. Novel adipose tissue-mediated resistance to dietinduced visceral obesity in 11 beta-hydroxysteroid dehydrogenase type 1-deficient mice. Diabetes 2004;53(4):931–938.

    PubMed  CAS  Google Scholar 

  133. Masaki T, Chiba S, Yasuda T, et al. Peripheral, but not central, administration of adiponectin reduces visceral adiposity and upregulates the expression of uncoupling protein in agouti yellow (Ay/a) obese mice. Diabetes 2003;52(9):2266–2273.

    PubMed  CAS  Google Scholar 

  134. National Cholesterol Education Program, National Heart, Lung, and Blood Institute, National Institutes of Health. Third report of the National Cholesterol Education Program (NCEP) Expert Panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III): final report. Bethesda (MD): NHLBI; 2002. NIH Publication No. 02-5215.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Bray, G.A., Greenway, F.L. (2007). Weight-Loss Drugs. In: Kushner, R.F., Bessesen, D.H. (eds) Treatment of the Obese Patient. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-59745-400-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-400-1_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-735-8

  • Online ISBN: 978-1-59745-400-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics