Skip to main content

Neuroregulation of Appetite

  • Chapter
  • 898 Accesses

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

This chapter reviews current literature on hormonal and neural signals critical for the regulation of individual meals and body fat. Body weight is regulated via an ongoing process called energy homeostasis, or the long-term matching of food intake to energy expenditure. Reductions from an individual’s “normal” weight owing to a lack of sufficient food lowers levels of adiposity signals (leptin and insulin) reaching the brain from the blood, activates anabolic hormones that stimulate food intake, and decreases the efficacy of meal-generated signals (such as cholecystokinin) that normally reduce meal size. A converse sequence of events happens when individuals gain weight, adiposity signals are increased, catabolic hormones are stimulated, and the consequence is a reduction in food intake and a normalization of body weight. The brain also functions as a “fuel sensor” and thereby senses nutrients and generates signals and activation of neuronal systems and circuits that regulate energy homeostasis. This chapter focuses on how these signals are received and integrated by the central nervous system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stellar E. The physiology of motivation. Psychol Rev 1954;61:5–22.

    Article  PubMed  CAS  Google Scholar 

  2. Powley TL. The ventromedial hypothalamic syndrome, satiety, and a cephalic phase hypothesis. Psychol Rev 1977;84:89–126.

    Article  PubMed  CAS  Google Scholar 

  3. Sclafani A. The role of hyperinsulinema and the vagus nerve in hypothalamic hyperphagia reexamined. Diabetologia 1981;20(Suppl):402–410.

    Article  PubMed  CAS  Google Scholar 

  4. Bray GA, Sclafani A, Novin D. Obesity-inducing hypothalamic knife cuts: effects on lipolysis and blood insulin levels. Am J Physiol 1982;243(3):R445–R449.

    PubMed  CAS  Google Scholar 

  5. Aravich PF, Sclafani A. Paraventricular hypothalamic lesions and medial hypothalamic knife cuts produce similar hyperphagia syndromes. Behav Neurosci 1983;97(6):970–983.

    Article  PubMed  CAS  Google Scholar 

  6. Grill HJ, Norgren R. Chronically decerebrate rats demonstrate satiation but not bait shyness. Science 1978;201(4352):267–269.

    Article  PubMed  CAS  Google Scholar 

  7. Grill HJ, Norgren R. The taste reactivity test. II. Mimetic responses to gustatory stimuli in chronic thalamic and chronic decerebrate rats. Brain Res 1978;143(2):281–297.

    Article  PubMed  CAS  Google Scholar 

  8. Grill HJ, Smith GP. Cholecystokinin decreases sucrose intake in chronic decerebrate rats. Am J Physiol 1988;254: R853–R856.

    PubMed  CAS  Google Scholar 

  9. Flynn FW, Grill HJ. Intraoral intake and taste reactivity responses elicited by sucrose and sodium chloride in chronic decerebrate rats. Behav Neurosci 1988;102(6):934–941.

    Article  PubMed  CAS  Google Scholar 

  10. Kennedy GC. The role of depot fat in the hypothalamic control of food intake in the rat. Proc R Soc Lond(Biol) 1953;140:579–592.

    Google Scholar 

  11. Ahima RS, et al. Leptin regulation of neuroendocrine systems. Front Neuroendocrinol 2000;21:263–307.

    Article  PubMed  CAS  Google Scholar 

  12. Cone RD, et al. The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. Int J Obes Relat Metab Disord 2001;25Suppl 5:S63–S67.

    PubMed  CAS  Google Scholar 

  13. Elmquist JK, Elias CF,. Saper CB From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 1999;22:221–232.

    Article  PubMed  CAS  Google Scholar 

  14. Schwartz MW, et al. Central nervous system control of food intake. Nature 2000;404:661–671.

    PubMed  CAS  Google Scholar 

  15. Havel PJ, et al. Gender differences in plasma leptin concentrations. Nat Med 1996;2(9):949–950.

    Article  PubMed  CAS  Google Scholar 

  16. Ahren B, et al. Regulation of plasma leptin in mice: influence of age, high-fat diet and fasting. Am J Physiol 1997;273:R113–R120.

    PubMed  CAS  Google Scholar 

  17. Havel PJ, Mechanisms regulating leptin production: Implications for control of energy balance. Am J Clin Nutr 1999;70:305–306.

    PubMed  CAS  Google Scholar 

  18. Buchanan C, et al. Central nervous system effects of leptin. Trends Endocrinol Metab 1998;9(4): 146–150.

    Article  CAS  PubMed  Google Scholar 

  19. Bjorntorp P. Metabolic implications of body fat distribution. Diabetes Care 1991;14(12): 1132–1143.

    Article  PubMed  CAS  Google Scholar 

  20. Bjorntorp P. Abdominal fat distribution and the metabolic syndrome. J Cardiovasc Pharmacol 1992;20Suppl 8: S26–S28.

    PubMed  Google Scholar 

  21. Bjomtorp P. Body fat distribution, insulin reistance, and metabolic diseases. Nutrition 1997;13:795–803.

    Article  Google Scholar 

  22. Woods SC, et al. Signals that regulate food intake and energy homeostasis. Science 1998;280:1378–1383.

    Article  PubMed  CAS  Google Scholar 

  23. Schwartz, MW, et al. Insulin in the brain: a hormonal regulator of energy balance. Endocrine Rev 1992;13:387–414.

    Article  CAS  Google Scholar 

  24. de Castro JM, Stroebele N. Food intake in the real world: implications for nutrition and aging. Clin Geriatr Med 2002; 18:685–697.

    Article  PubMed  Google Scholar 

  25. de Castro JM. The control of eating behavior in free living humans. In: Stricker EM, Woods SC, eds. Handbook of Neurobiology. Neurobiology of Food and Fluid Intake, vol. 14, no. 2 Kluwer Academic/ Plenum Publishers New York: 2004; pp. 467–502.

    Google Scholar 

  26. de Graaf C, et al. Biomarkers of satiation and satiety. Am J Clin Nutr 2004;79:946–961.

    PubMed  Google Scholar 

  27. Mayer J. Regulation of energy intake and the body weight: The glucostatic and lipostatic hypothesis. Ann NY Acad Sci 1955;63:14–42.

    Article  Google Scholar 

  28. Mayer J, Thomas DW Regulation of food intake and obesity. Science 1967;156:328–337.

    Article  PubMed  CAS  Google Scholar 

  29. Friedman MI. Fuel partitioning and food intake. Am J Clin Nutr 1998;67(Suppl 3):513S–518S.

    PubMed  CAS  Google Scholar 

  30. Friedman MI. An energy sensor for control of energy intake. Proc Nutr Soc 1997;56(1A):41–50.

    Article  PubMed  CAS  Google Scholar 

  31. Langhans W. Metabolic and glucostatic control of feeding. Proc Nutr Soc 1996;55:497–515.

    PubMed  CAS  Google Scholar 

  32. Peters A, et al. The selfish brain: competition for energy resources. Neurosci Biobehav Rev 2004;28:143–180.

    Article  PubMed  CAS  Google Scholar 

  33. Strubbe JH, Woods SC. The timing of meals. Psychol Rev 2004;111:128–141.

    Article  PubMed  Google Scholar 

  34. Woods SC, Strubbe JH. The psychobiology of meals. Psychonom Bull Rev 1994;1:141–155.

    Google Scholar 

  35. Woods SC, et al. Food intake and the regulation of body weight. Ann Rev Psychol 2000;51:255–277.

    Article  CAS  Google Scholar 

  36. Davis JD, Campbell CS. Peripheral control of meal size in the rat. Effect of sham feeding on meal size and drinking rate. J Comp Physiol Psychol 1973;83(3):379–387.

    Article  PubMed  CAS  Google Scholar 

  37. Davis JD, Smith GP. Learning to sham feed: behavioral adjustments to loss of physiological postingestional stimuli. Am J Physiol 1990;259(6 Pt 2):R1228–R1235.

    PubMed  CAS  Google Scholar 

  38. Gibbs J, Young RC, Smith GP. Cholecystokinin elicits satiety in rats with open gastric fistulas. Nature 1973;245:323–325.

    Article  PubMed  CAS  Google Scholar 

  39. Gibbs J, Young RC, Smith GP. Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol 1973;84:488–495.

    Article  PubMed  CAS  Google Scholar 

  40. Kissileff HR, et al. Cholecystokinin decreases food intake in man. Am J Clin Nutr 1981;34:154–160.

    PubMed  CAS  Google Scholar 

  41. Muurahainenn N, et al. Effects of cholecystokinin-octapeptide (CCK-8) on food intake and gastric emptying in man. Physiol Behav 1988;44:644–649.

    Article  Google Scholar 

  42. Moran TH, Schwartz GJ. Neurobiology of cholecystokinin. Crit Rev Neurobiol 1994;9:1–28.

    PubMed  CAS  Google Scholar 

  43. Smith GP, Gibbs J. The development and proof of the cholecystokinin hypothesis of satiety. In: Dourish CT, et al., eds. Multiple Cholecystokinin Receptors in the CNS, Oxford University Press Oxford: 1992; pp. 166–182.

    Google Scholar 

  44. Beglinger C, et al. Loxiglumide, a CCK-A receptor antagonist, stimulates calorie intake and hunger feelings in humans. Am J Physiol 2001;280:R1149–R1154.

    CAS  Google Scholar 

  45. Hewson G, et al. The cholecystokinin receptor antagonist L364,718 increases food intake in the rat by attenuation of endogenous cholecystokinin. Br J Pharmacol 1988;93:79–84.

    PubMed  CAS  Google Scholar 

  46. Moran TH, et al. Blockade of type A, but not type B, CCK receptors postpones satiety in rhesus monkeys. Am J Physiol 1993;265:R620–R624.

    PubMed  CAS  Google Scholar 

  47. Reidelberger RD, O’Rourke MF. Potent cholecystokinin antagonist L-364,718 stimulates food intake in rats. Am J Physiol 1989;257:R1512–R1518.

    PubMed  CAS  Google Scholar 

  48. Kaplan JM, Moran TFI. Gastrointestinal signaling in the control of food intake. In: Strieker EM, Woods SC, eds. Handbook of Behavioral Neurobiology. Neurobiology of Food and Fluid Intake, vol. 4, no. 2, Kluwer Academic/Plenum Publishers New York: 2004; pp. 273–303.

    Google Scholar 

  49. Smith GP, ed. Satiation: From Gut to Brain. Oxford University Press New York: 1998.

    Google Scholar 

  50. Stein LJ, Woods SC. Gastrin releasing peptide reduces meal size in rats. Peptides 1982;3(5):833–835.

    Article  PubMed  CAS  Google Scholar 

  51. Ladenheim EE, Wirth KE, Moran TH. Receptor subtype mediation of feeding suppression by bombesin-like peptides. Pharmacol Biochem Behav 1996;54(4):705–711.

    Article  PubMed  CAS  Google Scholar 

  52. Okada S, et al. Enterostatin (Val-Pro-Asp-Pro-Arg), the activation peptide of procolipase, selectively reduces fat intake. Physiol Behav 1991;49:1185–1189.

    Article  PubMed  CAS  Google Scholar 

  53. Shargill NS, et al. Enterostatin suppresses food intake following injection into the third ventricle of rats. Brain Res 1991;544:137–140.

    Article  PubMed  CAS  Google Scholar 

  54. Lotter EC, et al. Somatostatin decreases food intake of rats and baboons. J Comp Physiol Psychol 1981;95(2): 278–287.

    Article  PubMed  CAS  Google Scholar 

  55. Larsen PJ, et al, Systemic administration of the long-acting GLP-1 derivative NN2211 induces lasting and reversible weight loss in both normal and obese rats. Diabetes 2001;50:2530–2539.

    Article  PubMed  CAS  Google Scholar 

  56. Naslund E, et al. Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men. Int J Obes Relat Metab Disord 1999;23(3):304–311.

    Article  PubMed  CAS  Google Scholar 

  57. Fujimoto K, et al. Effect of intravenous administration of apolipoprotein A-IV on patterns of feeding, drinking and ambulatory activity in rats. Brain Res 1993;608:233–237.

    Article  PubMed  CAS  Google Scholar 

  58. Batterham RL, et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature 2002;418(6898): 650–654.

    Article  PubMed  CAS  Google Scholar 

  59. Chance WT, et al. Anorexia following the intrahypothalamic administration of amylin. Brain Res 1991;539(2):352–354.

    Article  PubMed  CAS  Google Scholar 

  60. Lutz T., Del Prete E, Scharrer E. Reduction of food intake in rats by intraperitoneal injection of low doses of amylin. Physiol Behav 1994;55(5):891–895.

    Article  PubMed  CAS  Google Scholar 

  61. Geary N. Glucagon and the control of meal size. In: Smith GP, ed. Satiation. From Gut to Brain. Oxford University Press New York: 1998; pp. 164–197.

    Google Scholar 

  62. Salter JM, Metabolic effects of glucagon in the Wistar rat. Am J Clin Nutr 1960;8:535–539.

    CAS  Google Scholar 

  63. Davison JS, Clarke GD. Mechanical properties and sensitivity to CCK of vagal gastric slowly adapting mechanoreceptors. Am J Physiol 1988;255(1 Pt 1):G55–G61.

    PubMed  CAS  Google Scholar 

  64. Lorenz DN, Goldman SA. Vagal mediation of thecholecystokinin satiety effect in rats. Physiol Behav 1982;29(4):599–604.

    Article  PubMed  CAS  Google Scholar 

  65. Moran TH, et al. Vagal afferent and efferent contributions to the inhibition of food intake by cholecystokinin. Am J Physiol 1997;272(4 Pt 2):R1245–R1251.

    PubMed  CAS  Google Scholar 

  66. Geary N, Le Sauter J, Noh U. Glucagon acts in the liver to control spontaneous meal size in rats. Am J Physiol 1993;264:R116–R122.

    PubMed  CAS  Google Scholar 

  67. Langhans W. Role of the liver in the metabolic control of eating: what we know —and what we do not know. Neurosci Biobehav Rev 1996;20:145–153.

    Article  PubMed  CAS  Google Scholar 

  68. Lutz TA, Del Prete E, Scharrer E. Subdiaphragmatic vagotomy does not influence the anorectic effect of amylin. Peptides 1995;16(3):457–462.

    Article  PubMed  CAS  Google Scholar 

  69. Lutz TA, et al. Lesion of the area postrema/nucleus of the solitary tract (AP/NTS) attenuates the anorectic effects of amylin and calcitonin gene-related peptide (CGRP) in rats. Peptides 1998;19(2): 309–317.

    Article  PubMed  CAS  Google Scholar 

  70. Edwards GL, Ladenheim EE, Ritter RC. Dorsomedial hindbrain participation in cholecystokinininduced satiety. Am J Physiol 1986;251:R971–R977.

    PubMed  CAS  Google Scholar 

  71. Moran TH, Ladenheim EE, Schwartz GJ. Within-meal gut feedback signaling. Int J Obes Rel Metab Disord 2001;25Suppl 5:S39–S41.

    CAS  Google Scholar 

  72. Moran TH, Kinzig KP. Gastrointestinal satiety signals II. Cholecystokinin. Am J Physiol Gastrointest Liver Physiol 2004;286(2):G183–G188.

    Article  PubMed  CAS  Google Scholar 

  73. Rinaman L, et al. Cholecystokinin activates catecholaminergic neurons in the caudal medulla that innervate the paraventricular nucleus of the hypothalamus in rats. J Comp Neurol 1995;360:246–256.

    Article  PubMed  CAS  Google Scholar 

  74. West DB, Fey D, Woods SC. Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats. Am J Physiol 1984;246:R776–R787.

    PubMed  CAS  Google Scholar 

  75. West DB, et al. Lithium chloride, cholecystokinin and meal patterns: evidence the cholecystokinin suppresses meal size in rats without causing malaise. Appetite 1987;8:221–227.

    Article  PubMed  CAS  Google Scholar 

  76. Moran TH, et al. Disordered food intake and obesity in rats lacking cholecystokinin A receptors. Am J Physiol 1998;274(3 Pt 2):R618–R625.

    PubMed  CAS  Google Scholar 

  77. Birch LL, et al. The variability of young children’s energy intake. N Engl J Med 1991;324:232–235.

    Article  PubMed  CAS  Google Scholar 

  78. de Castro JM. Prior day’s intake has macronutrient-specific delayed negative feedback effects on the spontaneous food intake of free-living humans. J Nutr 1998; 128:61–67.

    PubMed  Google Scholar 

  79. Gasnier A, Mayer A. Recherche sur la régulation de la nutrition. II. Mécanismes régulateurs de la nutrition chez le lapin domestique. Annals Physiologie Physicoichemie et Biologie 1939; 15:157–185.

    CAS  Google Scholar 

  80. Barrachina MD, et al. Synergi stic interaction between leptin and cholecystokinin to reduce short-term food intake in lean mice. Proc Natl Acad Sci USA 1997;94:10,455–10,460.

    Article  CAS  Google Scholar 

  81. Figlewicz DP, et al. Intraventricular insulin enhances the meal-suppressive efficacy of intraventricular cholecystokinin octapeptide in the baboon. Behav Neurosci 1995;109:567–569.

    Article  PubMed  CAS  Google Scholar 

  82. Matson CA, et al. Synergy between leptin and cholecystokinin (CCK) to control daily caloric intake. Peptides 1997;18:1275–1278.

    Article  PubMed  CAS  Google Scholar 

  83. Matson CA, et al. Cholecystokinin and leptin act synergistically to reduce body weight. Am J Physiol 2000;278:R882–R890.

    CAS  Google Scholar 

  84. Riedy CA, et al. Central insulin enhancessensitivitytocholecystokinin. Physiol Behav 1995; 58:755–760.

    Article  PubMed  CAS  Google Scholar 

  85. Schwartz GJ, Moran TIL Sub-diaphragmatic vagal afferent integration of meal-related gastrointestinal signals. Neurosci Biobehav Rev 1996;20:47–56.

    Article  PubMed  CAS  Google Scholar 

  86. Schwartz GJ, et al. Relationships between gastric motility and gastric vagal afferent responses to CCK and GRP in rats differ. Am J Physiol 1997;272(6 Pt 2):R1726–R1733.

    PubMed  CAS  Google Scholar 

  87. Grill HJ, Kaplan JM. The neuroanatomical axi s for control of energy balance. Front Neuroendocrinol 2002;23(l):2–40.

    Article  PubMed  CAS  Google Scholar 

  88. Flier JS. Obesity wars: molecular progress confronts an expanding epidemic. Cell 2004;116:337–350.

    Article  PubMed  CAS  Google Scholar 

  89. Porte DJ, et al. Obesity, diabetes and the central nervous system. Diabetologia 1998;41:863–881.

    Article  PubMed  CAS  Google Scholar 

  90. Woods SC, et al. Insulin and the blood-brain barrier. Curr Pharmaceut Des 2003;9:795–800.

    Article  CAS  Google Scholar 

  91. Tartaglia LA, et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 1995;83:1263–1271.

    CAS  Google Scholar 

  92. Bruning JC, et al. Role of brain insuli n receptor in control of body weight and reproduction. Science 2000;289(5487):2122–2125.

    Article  PubMed  CAS  Google Scholar 

  93. Seeley R, et al. Melanocortin receptors in leptin effects. Nature 1997;390(Nov 27):349.

    Article  PubMed  CAS  Google Scholar 

  94. Ollmann M, et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 1997;278(Oct 3): 135–138.

    Article  PubMed  CAS  Google Scholar 

  95. Rossi M, et al. A C-terminal fragment of agouti-related protein increases feeding and antagonizes the effect of alpha-melanocyte stimulating hormone in vivo. Endocrinology 1998; 139(Oct):4428–4431.

    Article  PubMed  CAS  Google Scholar 

  96. Flagan MM, et al. Long-term orexigenie effects of AgRP-(83-132) involve mechanisms other than melanocortin receptor blockade. Am J Physiol 2000;279:R47–R52.

    Google Scholar 

  97. Fan W, et al. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 1997;385(Jan 9): 165–168.

    Article  PubMed  CAS  Google Scholar 

  98. Hagan M, et al. Role of the CNS melanocortin system in the response to overfeeding. J Neurosci 1999;19(Mar 15):2362–2367.

    PubMed  CAS  Google Scholar 

  99. Niswender KD, Schwartz MW. Insulin and leptin revisited: adiposity signal s with overlapping physiological and intracellular signaling capabilities. Front Neuroendocrinol 2003;24:1–10.

    Article  PubMed  CAS  Google Scholar 

  100. Tartaglia LA. The leptin receptor. J Biol Chem 1997;272:6093–6096.

    PubMed  CAS  Google Scholar 

  101. Vaisse C, et al. Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nat Genet 1996;14(l):95–97.

    Article  PubMed  CAS  Google Scholar 

  102. Cohen B, Novick D, Rubinstein M. Modulation of insulin activities by leptin. Science 1996; 274(5290): 1185–1188.

    Article  PubMed  CAS  Google Scholar 

  103. Ainscow EK, et al. Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K(+) channels. J Physiol 2002;544:429–445.

    Article  PubMed  CAS  Google Scholar 

  104. Even P, Nicolaidis S. Spontaneous and 2DG-induced metabolic changes and feeding: The ischymetric hypothesis. Brain Res Bull 1985; 15:429–435.

    Article  PubMed  CAS  Google Scholar 

  105. Nicolaidis S, Even P. Mesure du métabolisme de fond en relation avec la prise alimentaire: Hypothese iscymétrique. Comptes Rendus Academie de Sciences, Paris 1984;298:295–300.

    CAS  Google Scholar 

  106. Clegg DJ, et al. Comparison of central and peripheral administration of C75 on food intake, body weight, and conditioned taste aversion. Diabetes 2002;51(11):3196–3201.

    Article  PubMed  CAS  Google Scholar 

  107. Kumar MV, et al. Differential effects of a centrally acting fatty acid synthase inhibitor in lean and obese mice. Proc Natl Acad Sci USA 2002;99:1921–1925.

    Article  PubMed  CAS  Google Scholar 

  108. Loftus TM, et al. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 2000;288:2299–2300.

    Article  Google Scholar 

  109. Obici S, et al. Inhibition of hypothalamic carnitine palmitoyltransf erase-1 decreases food intake and glucose production. Nat Med 2003;9:756–761.

    Article  PubMed  CAS  Google Scholar 

  110. Wortman MD, et al. C75 inhibits food intake by increasing CNS glucose metabolism. Nat Med 2003;9:483–485.

    Article  PubMed  CAS  Google Scholar 

  111. Obici S, et al. Central administration of oleic acid inhibits glucose production and food intake. Diabetes 2002;51(2):271–275.

    Article  PubMed  CAS  Google Scholar 

  112. Nicolaidis S. Mecanisme nerveux de l’equilibre energetique. Journees Annuelles de Diabetologie de l’Hotel-Dieu 1978;1: 152–156.

    Google Scholar 

  113. Levin BE, Dunn-Meynell AA, Routh VH. Brain glucose sensing and body energy homeostasis: role in obesity and diabetes. Am J Physiol 1999;276:R1223–R1231.

    PubMed  CAS  Google Scholar 

  114. Levin BE. Glucosensing neurons as integrators of metabolic signals. EWCBR 2002;22:67.

    Google Scholar 

  115. Clark JT, et al. Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology 1984;115(l):427–429.

    PubMed  CAS  Google Scholar 

  116. Stanley BG, Leibowitz SF. Neuropeptide Y injected into the paraventricular hypothalamus: a powerful stimulant of feeding behavior. Proc Natl Acad Sci USA 1984;82:3940–3943.

    Article  Google Scholar 

  117. Seeley RJ, Payne, CJ, Woods SC. Neuropeptide Y fails to increase intraoral intake in rats. Am J Physiol 1995;268:R423–R427.

    PubMed  CAS  Google Scholar 

  118. Allen YS, et al. Neuropeptide Y distribution in the rat brain. Science 1983;221:877–879.

    Article  PubMed  CAS  Google Scholar 

  119. Minth CD, Andrews PC, Dixon JE. Characterization, sequence and expression of the cloned human neuropeptide Y gene. J Biol Chem 1986;261(26): 11,975–11,979.

    Google Scholar 

  120. Mizuno TM, et al. Fasting regulates hypothalamic neuropeptide Y, agouti-related peptide, and proopiomelanocortin in diabetic mice independent of changes in leptin or insulin. Endocrinology 1999;140(10):4551–4557.

    Article  PubMed  CAS  Google Scholar 

  121. Sahu A, et al. Neuropeptide Y release from the parventricular nucleus increases in association with hyperphagia in streptozotocin-induced diabetic rats. Endocrinology 1992;131(6):2979–2985.

    Article  PubMed  CAS  Google Scholar 

  122. Marks JL, et al. Effect of fasting on regional levels of neuropeptide Y mRNA and insulin receptors in the rat hypothalamus: An autoradiographic study. Mol Cell Neurosci 1992;3:199–205.

    Article  CAS  PubMed  Google Scholar 

  123. Sahu A, et al. Neuropeptide Y concentration in microdissected hypothalamic regions and in vitro release from the medial basal hypothalamus-preoptic area of streptozotocin-diabetic rats with and without insulin substitution therapy. Endocrinology 1990;126:192–198.

    Article  PubMed  CAS  Google Scholar 

  124. Kalra SP, et al. Neuropeptide Y secretion increases in the paraventricular nucleus in association with increased appetite for food. Proc Natl Acad Sci USA 1991;88:10,931–10,935.

    Article  CAS  Google Scholar 

  125. Sahu A, Kalra PS, Kalra SP. Food deprivation and ingestion induce reciprocal changes in neuropeptide Y concentrations in the paraventricular nucleus. Peptides 1988;9:83–86.

    Article  PubMed  CAS  Google Scholar 

  126. Stanley BG, et al. Neuropeptide Y chronically injected into the hypothalamus: A powerful neurochemical inducer of hyperphagia and obesity. Peptides 1986;7:1189–1192.

    Article  PubMed  CAS  Google Scholar 

  127. McMinn JE, et al. NPY-induced overfeeding suppresses hypothalamic NPY mRNA expression: potential roles of plasma insulin and leptin. Regulat Peptides 1998;75-76:425–431.

    Article  Google Scholar 

  128. Sipols AJ, Baskin DG, Schwartz MW. Effect of intracerebroventricular insulin infusion on diabetic hyperphagia and hypothalamic neuropeptide gene expression. Diabetes 1995;44:147–151.

    Article  PubMed  CAS  Google Scholar 

  129. Sipols AJ, Baskin DG, Schwartz MW. The importance of central nervous system insulin deficiency to diabetic hyperphagia. Diabetes 1993;42(Suppl 1):152.

    Google Scholar 

  130. Stephens TW, et al. The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature 1995;377:530–534.

    Article  PubMed  CAS  Google Scholar 

  131. Schwartz MW, et al. Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide Y gene expression in ob/ob mice. Diabetes 1996; 45:531–535.

    Article  PubMed  CAS  Google Scholar 

  132. Bernardis LL, Bellinger LL. The dorsomedial hypothalamic nucleus revisited: 1998 update. ProcSoc Exp Biol Med 1998;218(4):284–306.

    CAS  Google Scholar 

  133. Kesterson RA, et al. Induction of neuropeptide Y gene expression in the dorsal medial hypothalamic nucleus in two models of the agouti obesity syndrome. Mol Endocrinol 1997; 11(5):630–637.

    Article  PubMed  CAS  Google Scholar 

  134. Guan XM, et al. Induction of neuropeptide Y expression in dorsomedial hypothalamus of dietinduced obese mice. Neuroreport 1998;9(15):3415–3419.

    Article  PubMed  CAS  Google Scholar 

  135. Bi S, Ladenheim EE, Moran TH. Elevated neuropeptide Y expression in the dorsomedial hypothalamic nucleus may contribute to the hyperphagia and obesity in OLETF rats with CCKA receptor deficit. Annual Meeting of the Society for Neuroscience, New Orleans, LA: 2000.

    Google Scholar 

  136. Erickson JC, Clegg KE, Palmiter RD. Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature 1996;381:415–418.

    Article  PubMed  CAS  Google Scholar 

  137. Erickson JC, Hollopeter G, Palmiter RD. Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y. Science 1996;274(5293): 1704–1707.

    Article  PubMed  CAS  Google Scholar 

  138. Hollopeter G, Erickson JC, Palmiter RD. Role of neuropeptide Y in diet-, chemical-and geneticinduced obesity of mice. Int J Obes Relat Metab Disord 1998;22(6):506–512.

    Article  PubMed  CAS  Google Scholar 

  139. Palmiter RD, et al. Life without neuropeptide Y. Recent Prog Horm Res 1998;53:163–199.

    PubMed  CAS  Google Scholar 

  140. Woods SC, et al. NPY and food intake: Discrepancies in the model. Regul Peptides 1998;75-76:403–408.

    Article  Google Scholar 

  141. Gropp E, et al. Agouti-related peptide-expressing neurons are mandatory for feeding. Nat Neurosci 2005;8(10): 1289–1291.

    Article  PubMed  CAS  Google Scholar 

  142. Criscione L, et al. Food intake in free-feeding and energy-deprived lean rats is mediated by the neuropeptide Y5 receptor. J Clin Invest 1998;102(12):2136–2145.

    PubMed  CAS  Google Scholar 

  143. Marsh DJ, et al. Role of the Y5 neuropeptide Y receptor in feeding and obesity (see comments). Nat Med 1998;4(6):718–721.

    Article  PubMed  CAS  Google Scholar 

  144. Kanatani A, et al, Role of the Yl receptor in the regulation of neuropeptide Y-rnediated feeding: comparison of wild-type, Yl receptor-deficient, and Y5 receptor-deficient mice. Endocrinology 2000;141(3): 1011–1016.

    Article  PubMed  CAS  Google Scholar 

  145. Tang-Christensen M, et al. Central administration of Y5 receptor antisense decreases spontaneous food intake and attenuates feeding in response to exogenous neuropeptide Y. J Endocrinol 1998;159(2):307–312.

    Article  PubMed  CAS  Google Scholar 

  146. Larsen PJ, et al. Activation of central neuropeptide Y Yl receptors potently stimulates food intake in male, rhesus monkeys [In Process Citation]. J Clin Endocrinol Metab 1999;84(10):3781–3791.

    Article  PubMed  CAS  Google Scholar 

  147. Heilig M, et al. In vivo downregulation of neuropeptide Y (NPY) Yl-receptors by i.c.v. antisense oligodeoxynucleotide administration is associated with signs of anxiety in rats. Soc Neurosci Abstr 1992;18:1539.

    Google Scholar 

  148. O’ Shea D, et al. Neuropeptide Y induced feeding in the rat is mediated by a novel receptor. Endocrinology 1997;138(1): 196–202.

    Article  PubMed  CAS  Google Scholar 

  149. Zimanyi IA, Fathi Z, Poindexter GS. Central control of feeding behavior by neuropeptide Y. Curr Pharm Des 1998;4(4):349–366.

    PubMed  CAS  Google Scholar 

  150. Levens NR, Della-Zuana O. Neuropeptide Y Y5 receptor antagonists as anti-obesity drugs. Curr Opin Investig Drugs 2003;4(10): 1198–1204.

    PubMed  CAS  Google Scholar 

  151. Qu D, et al. A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 1996;380(6571): 243–247.

    Article  PubMed  CAS  Google Scholar 

  152. Ludwig D, et al. Melanin-concentrating hormone: a functional melanocortin antagonist in the hypothalamus. Am J Physiol 1998;274(Apr):E627–E633.

    PubMed  CAS  Google Scholar 

  153. Sanchez M, Baker B, Celis M. Melanin-concentrating hormone (MCH) antagonizes the effects of alpha-MSH and neuropeptide E-I on grooming and locomotor activities in the rat. Peptides 1997; 18:393–396.

    Article  PubMed  CAS  Google Scholar 

  154. Clegg DJ, et al. Intraventricular melanin-concentrating hormone stimulates water intake independent of food intake. Am J Physiol Regul Integr Comp Physiol, 2003;284(2):R494–R499.

    PubMed  CAS  Google Scholar 

  155. Rossi M, et al. Melanin-concentrating hormone acutely stimulates feeding, but chronic administration has no effect on body weight. Endocrinology 1997;138(l):351–355.

    Article  PubMed  CAS  Google Scholar 

  156. Shimada M, et al. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 1998;396(Dec 17): 670–674.

    PubMed  CAS  Google Scholar 

  157. Mystkowski P, et al. Hypothalamic melanin-concentrating hormone and estrogen-induced weight loss [In Process Citation]. J Neurosci 2000;20(22):8637–8642.

    PubMed  CAS  Google Scholar 

  158. Mashiko S, et al. Antiobesity effect of a melanin-concentrating hormone 1 receptor antagonist in dietinduced obese mice. Endocrinology 2005;146(7):3080–3086.

    Article  PubMed  CAS  Google Scholar 

  159. Takekawa S, et al. T-226296: a novel, orally active and selective melanin-concentrating hormone receptor antagonist. Eur J Pharmacol 2002;438(3): 129–135.

    Article  PubMed  CAS  Google Scholar 

  160. Kowalski TJ, McBriar MD. Therapeutic potential of melanin-concentrating hormone-1 receptor antagonists for the treatment of obesity. Expert Opin Investig Drugs 2004; 13(9): 1113–1122.

    Article  PubMed  CAS  Google Scholar 

  161. de Lecea L, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA 1998;95:322–327.

    Article  PubMed  Google Scholar 

  162. Sakurai T, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G proteincoupled receptors that regulate feeding behavior. Cell 1998;92(4):573–585.

    Article  PubMed  CAS  Google Scholar 

  163. Broberger C, et al. Hypocretin/orexin-and melanin-concentrating hormone-expressing cells form di stinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems. J Comp Neurol 1998;402:460–474.

    Article  PubMed  CAS  Google Scholar 

  164. Yamanaka A, et al. Orexin-induced food intake involves neuropeptide Y pathway. Brain Res 2000;859(2):404–409.

    Article  PubMed  CAS  Google Scholar 

  165. Rauch M, et al. Orexin A activates leptin-responsive neurons in the arcuate nucleus [In Process Citation]. Pflugers Arch 2000;440(5):699–703.

    Article  PubMed  CAS  Google Scholar 

  166. Peyron C, et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 1998;18:9996–10,015.

    PubMed  CAS  Google Scholar 

  167. Kilduff TS, Peyron C. The hypocretin/orexin ligand-receptor system: implications for sleep and sleep disorders. Trends Neurosci 2000;23(8):359–365.

    Article  PubMed  CAS  Google Scholar 

  168. Elias CF, et al. Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J Comp Neurol 1998;402(4):442–459.

    Article  PubMed  CAS  Google Scholar 

  169. Tritos NA, et al. Functional interactions between melanin-concentrating hormone, neuropeptide Y, and anorectic neuropeptides in the rat hypothalamus. Diabetes 1998;47:1687–1692.

    Article  PubMed  CAS  Google Scholar 

  170. Jain MR, et al. Evidence that NPY Yl receptors are involved in stimulation of feeding by orexins (hypocretins) in sated rats. Regul Peptides 2000;87(l-3): 19–24.

    Article  CAS  Google Scholar 

  171. Sergeyev V, et al. Effect of 2-mercaptoacetate and 2-deoxy-D-glucose administration on the expression of NPY, AGRP, POMC, MCH and hypocretin/orexin in the rat hypothalamus. Neuroreport 2000;11(1):117–121.

    Article  PubMed  CAS  Google Scholar 

  172. Kojima M, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999;402(6762): 656–660.

    Article  PubMed  CAS  Google Scholar 

  173. Kojima M, Hosoda H, Kangawa K. Purification and distribution of ghrelin: the natural endogenous ligand for the growth hormone secretagogue receptor. Horm Res 2001;56(Suppl 1):93–97.

    Article  PubMed  CAS  Google Scholar 

  174. Tschöp M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature 2000;407(6806): 908–913.

    Article  PubMed  Google Scholar 

  175. Kamegai J, et al. Central effect of ghrelin, an endogenous growth hormone secretagogue, on hypothalamic peptide gene expression. Endocrinology 2000;141(12):4797–4800.

    Article  PubMed  CAS  Google Scholar 

  176. Wren AM, et al. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab 2001;86(12):5992.

    Article  PubMed  CAS  Google Scholar 

  177. Horvath TL, et al. Minireview: ghrelin and the regulation of energy balance—a hypothalamic perspective. Endocrinology 2001;142(10):4163–4169.

    Article  PubMed  CAS  Google Scholar 

  178. Asakawa A, et al. Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology 2001;120(2):337–345.

    Article  PubMed  CAS  Google Scholar 

  179. Kamegai J, et al. Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats. Diabetes 2001;50(ll):2438–2443.

    Article  PubMed  CAS  Google Scholar 

  180. Nakazato M, et al. A role for ghrelin in the central regulation of feeding. Nature 2001;409(6817): 194–198.

    Article  PubMed  CAS  Google Scholar 

  181. Wang L, Saint-Pierre DH, Tache Y. Peripheral ghrelin selectively increases Eos expression in neuropeptide Y-synthesizing neurons in mouse hypothalamic arcuate nucleus. Neurosci Lett 2002;325(l):47–51.

    PubMed  CAS  Google Scholar 

  182. Tschöp M, et al. Circulating ghrelin levels are decreased in human obesity. Diabetes 2001;50(4):707–709.

    Article  PubMed  Google Scholar 

  183. Cummings DE, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med 2002;346(21): 1623–1630.

    Article  PubMed  Google Scholar 

  184. Horvath TL, Diano S, Tschop M. Ghrelin in hypothalamic regulation of energy balance. Curr Top Med Chem 2003;3(8):921–927.

    Article  PubMed  CAS  Google Scholar 

  185. Asakawa A, et al. Antagonism of ghrelin receptor reduces food intake and body weight gain in mice. Gut 2003;52(7):947–952.

    Article  PubMed  CAS  Google Scholar 

  186. Beck B, Richy S, Stricker-Krongrad A. Feeding response to ghrelin agonist and antagonist in lean and obese Zucker rats. Life Sci 2004;76(4):473–478.

    Article  PubMed  CAS  Google Scholar 

  187. Bernstein IL, Lotter EC, Kulkosky PJ. Effect of force-feeding upon basal insulin levels in rats. Proc Soc Exp Biol Med 1975;150:546–548.

    PubMed  CAS  Google Scholar 

  188. Seeley RJ, et al. Behavioral, endocrine and hypothalamic responses to involuntary overfeeding. Am J Physiol 1996;271:R819–R823.

    PubMed  CAS  Google Scholar 

  189. Elias CF, et al. Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron 1998;21:1375–1385.

    Article  PubMed  CAS  Google Scholar 

  190. Kristensen P, et al. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 1998;393:72–76.

    Article  PubMed  CAS  Google Scholar 

  191. Lambert PD, et al. CART peptides in the central control of feeding and interactions with neuropeptide Y. Synapse 1998;29:293–298.

    Article  PubMed  CAS  Google Scholar 

  192. Vrang N, et al. Recombinant CART peptide induces c-Fos expression in central areas involved in control of feeding behaviour. Brain Res 1999;818:499–509.

    Article  PubMed  CAS  Google Scholar 

  193. Kask A, et al. Anorexigenic cocaine-and amphetamine-regulated transcript peptide intensifies fear reactions in rats. Brain Res 2000;857(l-2):283–285.

    Article  PubMed  CAS  Google Scholar 

  194. Abbott CR, et al. Evidence of an orexigenic role for cocaine-and amphetamine-regulated transcript after administration into discrete hypothalamic nuclei. Endocrinology 2001;142(8):3457–3463.

    Article  PubMed  CAS  Google Scholar 

  195. Krahn DD, Gosnell BA. Behavioral effects of corticotropin-releasing factor: localization and characterization of central effects. Brain Res 1988;443:63–69.

    Article  PubMed  CAS  Google Scholar 

  196. Arase K, et al. Effects of corticotropin releasing factor on food intake and brown adipose tissue thermogenesis in rats. Am J Physiol 1988;255:E255–E259.

    PubMed  CAS  Google Scholar 

  197. Heinrichs S, et al. Corticotropin-releasing factor-binding protein ligand inhibitor blunts excessive weight gain in genetically obese Zucker rats and rats during nicotine withdrawal. Proc Natl Acad Sei USA 1996;93(Dec 24): 15,475–15480.

    CAS  Google Scholar 

  198. Spina M, et al. Appetite-suppressing effects of urocortin, a CRF-related neuropeptide. Science 1996;273(Sep 13): 1561–1564.

    Article  PubMed  CAS  Google Scholar 

  199. Vaughan J, et al. Urocortin, a mammalian neuropeptide related to fi sh urotensin I and to corticotropinreleasing factor (see comments). Nature 1995;378(Nov 16):287–292.

    Article  PubMed  CAS  Google Scholar 

  200. Richard D, Huang Q, Timofeeva E. The corticotropin-releasing hormone system in the regulation of energy balance in obesity. Int J Obes Relat Metab Disord 2000;24(Suppl 2):S36–S39.

    PubMed  CAS  Google Scholar 

  201. Heinrichs SC, Richard D. The role of corticotropin-releasing factor and urocortin in the modulation of ingestive behavior. Neuropeptides 1999;33(5):350–359.

    Article  PubMed  CAS  Google Scholar 

  202. D’Alessio DA, et al. Elimination of the action of glucagon-like peptide 1 causes an impairment of glucose tolerance after nutrient ingestion by healthy baboons. J Clin Invest 1996;97(1): 133–138.

    Article  CAS  Google Scholar 

  203. Drucker DJ, et al. Biologic properties and therapeutic potential of glucagon-like peptide-2. JPEN J Parenter Enterai Nutr 1999;23(5 Suppl):S98–S100.

    CAS  Google Scholar 

  204. Drucker DJ, Glucagon-like peptides. Diabetes 1998;47(2): 159–169.

    Article  PubMed  CAS  Google Scholar 

  205. van Dijk G, Thiele TE. Glucagon-like peptide-1 (7-36) amide: a central regulator of satiety and interoceptive stress. Neuropeptides 1999;33(5):406–414.

    Article  PubMed  Google Scholar 

  206. Goldstone AP, et al. Effect of leptin on hypothalamic GLP-1 pepti de and brain-stem pre-proglucagon mRNA. Biochem Biophys Res Commun 2000;269(2):331–335.

    Article  PubMed  CAS  Google Scholar 

  207. Elmquist JK, et al. Leptin activates neurons in ventrobasal hypothalamus and brainstem. Endocrinology 1997; 138:839–842

    Article  PubMed  CAS  Google Scholar 

  208. Turton MD, et al. A role for glucagon-like peptide-1 in the central regulation of feeding (see comments). Nature 1996;379(6560): 69–72.

    Article  PubMed  CAS  Google Scholar 

  209. Tang-Christensen M, et al. Central administration of GLP-l-(7-36) amide inhibits food and water intake in rats. Am J Physiol 1996;271(4 Pt 2):R848–R856.

    PubMed  CAS  Google Scholar 

  210. Van Dijk G, et al. Central infusions of leptin and GLP-1-(7-36) amide differentially stimulate c-FLI in the rat brain. Am J Physiol 1996;271(4 Pt 2):R1096–R1100.

    PubMed  Google Scholar 

  211. Thiele TE, et al. Central infusion of GLP-1, but not leptin, produces conditioned taste aversions in rats. Am J Physiol 1997;272(2 Pt 2):R726–R730.

    PubMed  CAS  Google Scholar 

  212. Thiele TE, et al. Central infusion of glucagon-like peptide-l-(7-36) amide (GLP-1) receptor antagonist attenuates lithium chloride-induced c-Fos induction in rat brainstem. Brain Res 1998;801(l–2): 164–170.

    Article  PubMed  CAS  Google Scholar 

  213. Seeley RJ, et al. The role of CNS GLP-l-(7-36) amide receptors in mediating the visceral illness effects of lithium chloride. J Neurosci 2000;20:1616–1621.

    PubMed  CAS  Google Scholar 

  214. Tang-Christensen M, et al. The proglucagon-derived peptide, glucagon-like peptide-2, is a neurotransmitter involved in the regulation of food intake. Nat Med 2000;6(7):802–807.

    Article  PubMed  CAS  Google Scholar 

  215. Halford JC, et al. Serotonin (5-HT) drugs: effects on appetite expression and use for the treatment of obesity. Curr Drag Targets 2005;6(2):201–213.

    CAS  Google Scholar 

  216. Lawton CL, Blundell JE. The effect of d-fenfluramine on intake of carbohydrate supplements is influenced by the hydration of the test diets. Behav Pharmacol 1992;3(5):517–523.

    Article  PubMed  CAS  Google Scholar 

  217. Leibowitz SF, Alexander JT. Hypothalamic serotonin in control of eating behavior, meal size, and body weight. Biol Psychiatry 1998;44(9):851–864.

    Article  PubMed  CAS  Google Scholar 

  218. Pierce PA, et al. 5-Hydroxytryptamine receptor subtype messenger RNAs in human dorsal root ganglia: a polymerase chain reaction study. Neuroscience 1997;81(3):813–819.

    Article  PubMed  CAS  Google Scholar 

  219. Miller KJ, Serotonin 5-ht2c receptor agonists: potential for the treatment of obesity. Mol Interv 2005;5(5):282–291.

    Article  PubMed  CAS  Google Scholar 

  220. Nonogaki K, et al. Leptin-independent hyperphagia and type 2 diabetes in mice with a mutated serotonin 5-HT2C receptor gene. Nat Med 1998;4(10): 1152–1156.

    Article  PubMed  CAS  Google Scholar 

  221. Heisler LK, et al. Activation of central melanocortin pathways by fenfluramine. Science 2002;297(5581):609–611.

    Article  PubMed  CAS  Google Scholar 

  222. Ettinger MP, et al. Recombinant variant of ciliary neurotrophic factor for weight loss in obese adults: a randomized, dose-ranging study. JAMA 2003;289(14): 1826–1832.

    Article  PubMed  CAS  Google Scholar 

  223. Anderson KD, et al. Activation of the hypothalamic arcuate nucleus predicts the anorectic actions of ciliary neurotrophic factor and leptin in intact and gold thioglucose-lesioned mice. JNeuroendocrinol 2003;15(7):649–660.

    CAS  Google Scholar 

  224. Kelly JF, et al. Ciliary neurotrophic factor and leptin induce di stinet patterns of imniediate early gene expression in the brain. Diabetes 2004;53(4):911–920.

    Article  PubMed  CAS  Google Scholar 

  225. Kokoeva MV, Yin H, Flier JS. Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science 2005;310(5748):679–683.

    Article  PubMed  CAS  Google Scholar 

  226. Pu S, et al. Neuropeptide Y counteracts the anorectic and weight reducing effects of ciliary neurotropic factor. J Neuroendocrinol 2000; 12(9):827–832.

    Article  PubMed  CAS  Google Scholar 

  227. Cone RD, Anatomy and regulation of the central melanocortin system. Nat Neurosci 2005;8(5): 571–578.

    Article  PubMed  CAS  Google Scholar 

  228. Yen T, et al. Obesity, diabetes, and neoplasia in yellow A(vy)/-mice: ectopic expression of the agouti gene. FASEB J 1994;8(May):479–488.

    PubMed  CAS  Google Scholar 

  229. Zimanyi IA, Pelleymounter MA. The role of melanocortin peptides and receptors in regulation of energy balance. Curr Pharm Des 2003;9(8):627–641.

    Article  PubMed  CAS  Google Scholar 

  230. Stutz AM, Morrison CD, Argyropoulos G. The agouti-related protein and its role in energy homeostasis. Peptides 2005;26(10):1771–1781.

    Article  PubMed  CAS  Google Scholar 

  231. Yaswen L, et al. Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat Med 1999;5(9):1066–1070.

    Article  PubMed  CAS  Google Scholar 

  232. Krude H, et al. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 1998;19(2): 155–157.

    Article  PubMed  CAS  Google Scholar 

  233. Huszar D, et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 1997;88(1):131–141.

    Article  PubMed  CAS  Google Scholar 

  234. Ollmann MM, et al. Antagonism of central melanocortin receptors in vitro and in vivo by agoutirelated protein. Science 1997;278(5335): 135–138.

    Article  PubMed  CAS  Google Scholar 

  235. Cone RD, et al. The melanocortin receptors: agonists, antagonists, and the hormonal control of pigmentation. Rec Prog Hormone Res 1996;51:287–320.

    CAS  Google Scholar 

  236. Seeley RJ, Drazen DL, Clegg D.I. The critical role of the melanocortin system in the control of energy balance. Annu Rev Nutr 2004;24:133–149.

    Article  PubMed  CAS  Google Scholar 

  237. Boyce RS, Duhl DM. Melanocortin-4 receptor agonists for the treatment of obesity. Curr Opin Investig Drugs 2004;5(10): 1063–1071.

    PubMed  CAS  Google Scholar 

  238. Bluher S, et al. Ciliary neurotrophic factorAxlS alters energy homeostasis, decreases body weight, and improves metabolic control in diet-induced obese and UCP1-DTA mice. Diabetes 2004; 53(11): 2787–2796.

    Article  PubMed  Google Scholar 

  239. Dorr RT, et al. Evaluation of melanotan-II, a superpotent cyclic melanotropic peptide in a pilot phase-I clinical study. Life Sci 1996;58(20): 1777–1784.

    Article  PubMed  CAS  Google Scholar 

  240. Reizes O, et al. Transgenic expression of syndecan-1 uncovers a physiological control of feeding behavior by syndecan-3. Cell 2001;106(l): 105–116.

    Article  PubMed  CAS  Google Scholar 

  241. Strader AD, et al., Mice lacking the syndecan-3 gene are resistant to dietary-induced obesity. J Clin Invest 2004;114:1354–1360.

    Article  PubMed  CAS  Google Scholar 

  242. Park PW, Reizes O, Bernfield M. Cell surface heparan sulfate proteoglycans: selective regulators of ligand-receptor encounters. J Biol Chem 2000;275(39):29,923–29,926.

    Article  CAS  Google Scholar 

  243. Bernfield M, et al. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 1999;68:729–777.

    Article  PubMed  CAS  Google Scholar 

  244. Reizes O, et al. Syndecan-3 modulates food intake by interacting with the melanocortin/AgRP pathway. Ann NY Acad Sci 2003;994:66–73.

    PubMed  CAS  Google Scholar 

  245. Pinto S, et al. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science 2004;304(5667): 110–115.

    Article  PubMed  CAS  Google Scholar 

  246. Bouret SG, Draper SJ, Simerly RB. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 2004;304(5667): 108–110.

    Article  PubMed  CAS  Google Scholar 

  247. Kaksonen Vi, et al. Syndecan-3-deficient mice exhibit enhanced LTP and impaired hippocampusdependent memory. Mol Cell Neurosci 2002;21(l): 158–172.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Reizes, O., Benoit, S.C., Clegg, D.J. (2007). Neuroregulation of Appetite. In: Kushner, R.F., Bessesen, D.H. (eds) Treatment of the Obese Patient. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-59745-400-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-400-1_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-735-8

  • Online ISBN: 978-1-59745-400-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics