Skip to main content

Monitoring Molecular Interactions by NMR

  • Protocol
  • First Online:
Protein Structure, Stability, and Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 490))

Abstract

The ability of proteins to interact with small molecules or other proteins is essential in all aspects of biology. In many cases these interactions cause detectable changes in NMR chemical shifts, lineshapes, and relaxation rates and therefore provide a means by which to study these biologically important phenomena. Here we review the theory upon which this analysis is based, provide several illustrative examples, and highlight potential problems in the study of binding interactions by solution NMR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palmer, A. G., 3rd. (2004) NMR characterization of the dynamics of biomacromolecules. Chem Rev 104, 3623–3640.

    Article  PubMed  CAS  Google Scholar 

  2. Jarymowycz, V. A., Stone, M. J. (2006) Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chem Rev 106, 1624–1671.

    Article  PubMed  CAS  Google Scholar 

  3. Abragam, A. (1961) Principles of Nuclear Magnetism, Clarendon Press, Oxford.

    Google Scholar 

  4. Wallach, D. (1967) Effect of internal rotation on angular correlation functions. J Chem Phys 47, 5258–5268.

    Article  CAS  Google Scholar 

  5. Woessner, D. E. (1962) Nuclear spin relaxation in ellipsoids undergoing rotational Brownian motion. J Chem Phys 37, 647–654.

    Article  CAS  Google Scholar 

  6. Kay, L. E., Torchia, D. A., Bax, A. (1989) Backbone dynamics of proteins as studied by nitrogen-15 inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28, 8972–8979.

    Article  PubMed  CAS  Google Scholar 

  7. Tjandra, N., Feller, S. E., Pastor, R. W., et al. (1995) Rotational diffusion anisotropy of human ubiquitin from 15N NMR relaxation. J Am Chem Soc 117, 12562–12566.

    Article  CAS  Google Scholar 

  8. Zheng, Z., Czaplicki, J., Jardetzky, O. (1995) Backbone dynamics of trp repressor studied by 15 N NMR relaxation. Biochemistry 34, 5212–5223.

    Article  PubMed  CAS  Google Scholar 

  9. McConnell, H. M. (1958) Reaction rates by nuclear magnetic resonance. J Chem Phys 28, 430–431.

    Article  CAS  Google Scholar 

  10. Meiboom, S., Gill, D. (1958) Modified spin-echo method for measuring nuclear spin relaxation times. Rev Sci Instrum 29, 688–691.

    Article  CAS  Google Scholar 

  11. Carr, H. Y., Purcell, E. M. (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94, 630–638.

    Article  CAS  Google Scholar 

  12. Orekhov, V. Y., Pervushin, K. V., Arseniev, A. S. (1994) Backbone dynamics of (1-71) bacteriorhodopsin studied by two-dimensional 1H-15N NMR spectroscopy. Eur J Biochem 219, 887–896.

    Article  PubMed  CAS  Google Scholar 

  13. Allerhand, A., Gutowsky, H. S. (1964) Spin-echo NMR studies of chemical exchange. I. Some general aspects. J Chem Phys 41, 2115–2126.

    Article  CAS  Google Scholar 

  14. Loria, J. P., Rance, M., Palmer, A. G. (1999) A relaxation-compensated Carr–Purcell–Meiboom–Gill sequence for characterizing chemical exchange by NMR spectroscopy. J Am Chem Soc 121, 2331–2332.

    Article  CAS  Google Scholar 

  15. Carver, J. P., Richards, R. E. (1972) A general two-site solution for the chemical exchange produced dependence of T2 upon the Carr–Purcell pulse separation. J Mag Res 6, 89–105.

    CAS  Google Scholar 

  16. Davis, D. G., Perlman, M. E., London, R. E. (1994) Direct measurements of the dissociation-rate constant for inhibitor-enzyme complexes via the T and T2 (CPMG) methods, J Magn Reson Ser B 104, 266–275.

    Article  CAS  Google Scholar 

  17. Jen, J. (1978) Chemical exchange and NMR T2 relaxation – the multisite case. J Magn Reson 30, 111–128.

    CAS  Google Scholar 

  18. Reeves, L. W., Shaw, K. N. (1970) Nuclear magnetic resonance studies of multi-site exchange. I. Matrix formulation of the Bloch equations. Can J Chem 48, 3641–3653.

    Article  CAS  Google Scholar 

  19. Palmer, A. G., Williams, J., McDermott, A. (1996) Nuclear magnetic resonance studies of biopolymer dynamics. J Phys Chem 100, 13293–13310.

    Article  Google Scholar 

  20. Palmer, A. G., Bracken, C. (1999) in (Pons, M., Ed.) NMR in Supramolecular Chemistry, pp. 171–190, Kluwer Academic Publishers, Netherlands.

    Google Scholar 

  21. Palmer, A. G., Kroenke, C. D., Loria, J. P. (2001) Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Meth. Enzymol 339 Part B, 204–238.

    Article  Google Scholar 

  22. Palmer, A. G. (2001) NMR probes of molecular dynamics: Overview and comparison with other techniques. Annu Rev Biophys Biomol Struct 30, 129–155.

    Article  PubMed  CAS  Google Scholar 

  23. Kempf, J. G., Loria, J. P. (2004) in (Downing, A. K., ed.) Protein NMR Techniques, pp. 185–231, Humana Press, Totowa.

    Chapter  Google Scholar 

  24. Bernado, P., Akerud, T., Garcia de la Torre, J., et al. (2003) Combined use of NMR relaxation measurements and hydrodynamic calculations to study protein association. Evidence for tetramers of low molecular weight protein tyrosine phosphatase in solution, J Am Chem Soc 125, 916–923.

    Article  PubMed  CAS  Google Scholar 

  25. Fushman, D., Cahill, S., Cowburn, D. (1997) The main-chain dynamics of the dynamin pleckstrin homology (PH) domain in solution: analysis of 15 N relaxation with monomer/dimer equilibration. J Mol Biol 266, 173–194.

    Article  PubMed  CAS  Google Scholar 

  26. Pfuhl, M., Chen, H. A., Kristensen, S. M., et al. (1999) NMR exchange broadening arising from specific low affinity protein self-association: analysis of nitrogen-15 nuclear relaxation for rat CD2 domain 1, J Biomol NMR 14, 307–320.

    Article  PubMed  CAS  Google Scholar 

  27. Mercier, P., Spyracopoulos, L., Sykes, B. D. (2001) Structure, dynamics, and thermodynamics of the structural domain of troponin C in complex with the regulatory peptide 1-40 of troponin I. Biochemistry 40, 10063–10077.

    Google Scholar 

  28. Hahn, E. L. (1950) Spin echoes. Phys Rev 80, 580–594.

    Article  Google Scholar 

  29. Skelton, N. J., Palmer, A. G., Akke, M., et al. (1993) Practical aspects of two-dimensional proton-detected 15N spin relaxation measurements. J Magn Reson, Ser B 102, 253–264.

    Article  CAS  Google Scholar 

  30. Kay, L. E., Keifer, P., Saarinen, T. (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc 114, 10663–10665.

    Google Scholar 

  31. Palmer, A. G., Cavanagh, J., Wright, P. E., Rance, M. (1991) Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy. J Magn Reson 93, 151–170.

    CAS  Google Scholar 

  32. Garcia de la Torre, J., Huertas, M. L., Carrasco, B. (2000) HYDRONMR: prediction of NMR relaxation of globular proteins from atomic-level structures and hydrodynamic calculations. J Magn Reson 147, 138–146.

    Article  Google Scholar 

  33. Bernado, P., Garcia de la Torre, J., Pons, M. (2002) Interpretation of 15 N NMR relaxation data of globular proteins using hydrodynamic calculations with HYDRONMR, J Biomol NMR 23, 139–150.

    Article  PubMed  CAS  Google Scholar 

  34. Kempf, J. G., Loria, J. P. (2002) Protein dynamics from solution NMR: Theory and applications. Cell Biochem Biophys 39, 187–212.

    Article  Google Scholar 

  35. Hill, R. B., Bracken, C., DeGrado, W. F., et al. (2000) Molecular motions and protein folding: Characterization of the backbone dynamics and folding equilibrium of alpha D-2 using C-13 NMR spin relaxation. J Am Chem Soc 122, 11610–11619.

    Google Scholar 

  36. Millet, O. M., Loria, J. P., Kroenke, C. D., et al. (2000) The static magnetic field dependence of chemical exchange linebroadening defines the NMR chemical shift time scale. J Am Chem Soc 122, 2867–2877.

    Article  CAS  Google Scholar 

  37. Kovrigin, E. L., Kempf, J. G., Grey, M., et al. (2006) Faithful estimation of dynamics parameters from CPMG relaxation dispersion measurements. J Magn Reson 180, 93–104.

    PubMed  CAS  Google Scholar 

  38. Yung, A., Turnbull, W. B., Kalverda, A. P., et al. (2003) Large-scale millisecond intersubunit dynamics in the B subunit homopentamer of the toxin derived from Escherichia coli O157. J Am Chem Soc 125, 13058–13062.

    Google Scholar 

  39. Xu, X. P., and Case, D. A. (2001) Automated prediction of 15 N, 13Calpha, 13Cbeta and 13C' chemical shifts in proteins using a density functional database. J Biomol NMR 21, 321–333.

    Article  PubMed  CAS  Google Scholar 

  40. Ishima, R., Torchia, D. A. (2006) Accuracy of optimized chemical-exchange parameters derived by fitting CPMG R2 dispersion profiles when R2(0a) not = R2(0b). J Biomol NMR 34, 209–219.

    Article  PubMed  CAS  Google Scholar 

  41. Lee, G. C., Chan, S. I. (1971) A 31P NMR study of the association of uridine-3'-monophosphate to ribonuclease A. Biochem Biophys Res Commun 43, 142–148.

    Article  PubMed  CAS  Google Scholar 

  42. Raftery, M. A., Dahlquist, F. W., Chan, S. I., et al. (1968) A proton magnetic resonance study of the association of lysozyme with monosaccharide inhibitors. J Biol Chem 243, 4175–4180.

    PubMed  CAS  Google Scholar 

  43. Lanir, A., Navon, G. (1971) Nuclear magnetic resonance studies of bovine carbonic anhydrase. Binding of sulfonamides to the zinc enzyme. Biochemistry 10, 1024–1032.

    Article  PubMed  CAS  Google Scholar 

  44. Tolkatchev, D., Xu, P., Ni, F. (2003) Probing the kinetic landscape of transient peptide–protein interactions by use of peptide (15)n NMR relaxation dispersion spectroscopy: binding of an antithrombin peptide to human prothrombin. J Am Chem Soc 125, 12432–12442.

    Article  Google Scholar 

  45. Dubois, B. W., Evers, A. S. (1992) 19F-NMR spin-spin relaxation (T2) method for characterizing volatile anesthetic binding to proteins. Analysis of isoflurane binding to serum albumin, Biochemistry 31, 7069–7076.

    Article  PubMed  CAS  Google Scholar 

  46. Rozovsky, S., Jogl, G., Tong, L., et al. (2001) Solution-state NMR investigations of triosephosphate isomerase active site loop motion: ligand release in relation to active site loop dynamics. J Mol Biol 310, 271–280.

    Article  PubMed  CAS  Google Scholar 

  47. Rozovsky, S., McDermott, A. E. (2001) The time scale of the catalytic loop motion in triosephosphate isomerase. J Mol Biol 310, 259–270.

    Article  PubMed  CAS  Google Scholar 

  48. Gerig, J. T., Halley, B. A., Loehr, D. T., Reimer, J. A. (1979) NMR studies of ortho and meta-fluorocinnamate alpha chymotrypsin complexes. Org Magn Reson 12, 352–356.

    Article  CAS  Google Scholar 

  49. Gerig, J. T., Stock, A. D. (1975) Studies of kinetics of interaction between N-trifluoroacetyl-D-tryptophan and alph-chymotrypsin by pulsed nuclear magnetic resonance. Org Magn Reson 7, 249–255.

    Article  CAS  Google Scholar 

  50. Mittag, T., Schaffhausen, B., Gunther, U. L. (2003) Direct observation of protein–ligand interaction kinetics. Biochemistry 42, 11128–11136.

    Google Scholar 

  51. Beach, H., Cole, R., Gill, M., et al. (2005) Conservation of μs–ms enzyme motions in the apo- and substrate-mimicked state. J Am Chem Soc 127, 9167–9176.

    Article  PubMed  CAS  Google Scholar 

  52. Kovrigin, E. L., Loria, J. P. (2006) Enzyme dynamics along the reaction coordinate: critical role of a conserved residue. Biochemistry 45, 2636–2647.

    Article  PubMed  CAS  Google Scholar 

  53. Marquardt, D. W. (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Indust App Math 11, 431–441.

    Article  Google Scholar 

Download references

Acknowledgements

JPL acknowledges support from the National Institutes of Health (R01-GM070823) and National Science Foundation (MCB0236966). JML is supported by an NIH biophysical training grant (GM08283).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lipchock, J.M., Loria, J.P. (2009). Monitoring Molecular Interactions by NMR. In: Shriver, J. (eds) Protein Structure, Stability, and Interactions. Methods in Molecular Biology, vol 490. Humana Press. https://doi.org/10.1007/978-1-59745-367-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-367-7_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-954-3

  • Online ISBN: 978-1-59745-367-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics