Skip to main content

Abstract

The wound-healing response is involved in many diseases throughout the body, including the eye. It is a key factor in influencing results of surgery, particularly that occurring in the treatment of the blinding disease glaucoma, where the postoperative fibrotic response is the major determinant of outcome. Transforming growth factor-β (TGF-β) has been widely established as a target for post-operative antifibrotic therapy in glaucoma. Strategies against TGF-β have included antibodies, antisense phosphorothiate oligonucleotides, and naturally occurring antagonists. These have either reached preclinical or clinical trials in the eye, but offer potential widespread applications anywhere in the body where the wound-healing response requires modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roberts A, Sporn M. eds. The transforming growth factor-betas.In: Handbook of Experimental Pharmacology Number 1. Peptide Growth Factors and Their Receptors. Berlin: Springer-Verlag 1990; pp. 419–472.

    Google Scholar 

  2. Le Magueresse-Battistoni B, Morera A, Goddard I, Benahmed M. Expression of mRNA’s for transforming growth factor-beta receptors in the rat testis. Endocrinology 1995;136:2788–2791.

    Article  PubMed  Google Scholar 

  3. Attisano L, Wrana J, Lopez-Casillas F, Massagué J. TGF-beta receptors and actions. Biochimica Biophysica Acta 1994;1222:71–80.

    CAS  Google Scholar 

  4. Blobe G, Schiemann W, Lodish H. Role of transforming growth factor β in human disease. New England Journal of Medicine 2000;342:1350–1358.

    Article  CAS  PubMed  Google Scholar 

  5. Nakao A, Imamura T, Souchelnytskyi S, et al. TGF-β receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J 1997;16:5353–5362.

    Article  CAS  PubMed  Google Scholar 

  6. Piek E, Heldin C-H, ten Dijke P. Specificity, diversity, and regulation in TGF-β superfamily signaling. FASEB J 1999;13:2105–2124.

    CAS  Google Scholar 

  7. Massagué J, Chen Y. Controlling TGF-beta signaling. Genes Dev 2000;14:627–644.

    PubMed  Google Scholar 

  8. Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS. Transforming growth factor beta: Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 1986;83:4167–4171.

    Article  CAS  PubMed  Google Scholar 

  9. Shah M, Foreman DM, Ferguson MW. Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci 1995;108:985–1002.

    CAS  PubMed  Google Scholar 

  10. Cordeiro MF, Bhattacharya SS, Schultz GS, Khaw PT. TGF-β1,-β2 &-β3 in vitro: Biphasic effects on Tenon’s fibroblast contraction, proliferation & migration. Invest Ophthalmol Vis Sci 2000;41:756–763.

    CAS  PubMed  Google Scholar 

  11. Critchlow MA, Bland YS, Ashhurst DE. The effect of exogenous transforming growth factor-beta 2 on healing fractures in the rabbit. Bone 1995;16:521–527.

    Article  CAS  PubMed  Google Scholar 

  12. Merwin JR, Roberts AB, Kondaiah P, Tucker A, Madri J. Vascular cell responses to TGF-β3 mimic those of TGF-β` in vitro. Growth Factors 1991;5:149–158.

    Article  CAS  PubMed  Google Scholar 

  13. Levine JH, Moses HL, Gold LI, Nanney LB. Spatial and temporal patterns of immunoreactive transforming growth factor-beta-1,-beta-2 and-beta-3 during excisional wound repair. Am J Pathol 1993; 143:368–380.

    CAS  PubMed  Google Scholar 

  14. Longaker MT, Bouhana KS, Harrison MR, Danielpour D, Roberts AB, Banda MJ. Wound healing in the fetus: Possible role for inflammatory macrophages and transforming growth factor-beta isoforms. Wound Rep Reg 1994;2:104–112.

    Article  CAS  Google Scholar 

  15. Gruschwitz M, Muller PU, Sepp N, Hofer E, Fontana A, Wick G. Transcription and expression of transforming growth factor type beta in the skin of progressive systemic sclerosis: A mediator of fibrosis? J Invest Dermatol 1990;94:197–203.

    Article  CAS  PubMed  Google Scholar 

  16. Shah M, Foreman DM, Ferguson MW. Neutralising antibody to TGF-beta 1,2 reduces cutaneous scarring in adult rodents. J Cell Sci 1994;107:1137–1157.

    CAS  PubMed  Google Scholar 

  17. Cox DA. Transforming growth factor-beta 3. Cell Biol Int 1995;19:357–371.

    Article  CAS  PubMed  Google Scholar 

  18. Wicke C, Halliday B, Allen D, et al. Effects of steroids and retinoids on wound healing. Arch Surg 2000;135:1265–1270.

    Article  CAS  PubMed  Google Scholar 

  19. Shukla A, Meisler N, Cutroneo K. Perspective article: transforming growth factor-beta: crossroad of glucocorticoid and bleomycin regulation of collagen synthesis in lung fibroblasts. Wound Repair Regen 1999;7:133–140.

    Article  CAS  PubMed  Google Scholar 

  20. Salomon G, Kasid A, Bernstein E, Buresh C, Director E, Norton J. Gene expression in normal and doxorubin impaired wounds: Importance of transforming growth factor-beta. Surgery 1990;108:318–323.

    CAS  PubMed  Google Scholar 

  21. Beck L, DeGuzman L, Lee W, Xu Y, Siegel M, Amento E. One systemic administration of transforming growth factor-beta 1 reverses age-or glucocorticoid-impaired wound healing. J Clin Invest 1993;92:2841–2849.

    Article  CAS  PubMed  Google Scholar 

  22. Ashcroft GS, Dodsworth J, van-Boxtel E, et al. Estrogen accelerates cutaneous wound healing associated with an increase in TGF-betal levels. Nat Med 1997;3:1209–1215.

    Article  CAS  PubMed  Google Scholar 

  23. Lee T, Chin G, Kim W, Chau D, Gittes G, Longaker M. Expression of transforming growth factor beta 1,2, and 3 proteins in keloids. Ann Plast Surg 1999;43:179–184.

    Article  CAS  PubMed  Google Scholar 

  24. Cotton S, Herrick A, Jaysonm M, Freemont A. TGF beta — a role in systemic sclerosis? J Pathol 1998;184:4–6.

    Article  CAS  PubMed  Google Scholar 

  25. Sime P, O’Reilly K. Fibrosis of the lung and other tissues: new concepts in pathogenesis and treatment. Clin Immunol 2001;99:308–319.

    Article  CAS  PubMed  Google Scholar 

  26. Basile D. The transforming growth factor beta system in kidney disease and repair: recent progress and future directions. Curr Opin Nephrol Hypertens 1999;8:21–30.

    Article  CAS  PubMed  Google Scholar 

  27. Sanderson N, Factor V, Nagy P, et al. Hepatic expression of mature transforming growth factor beta1 in transgenic mice results in multiple tissue lesions. Proc Natl Acad Sci USA 1995;92:2572–2576.

    Article  CAS  PubMed  Google Scholar 

  28. McCaffrey T. TGF-betas and TGF-beta receptors in atherosclerosis. Cytokine Growth Factor Rev 2000;11:103–114.

    Article  CAS  PubMed  Google Scholar 

  29. August P, Leventhal B, Suthanthiran M. Hypertension-induced organ damage in African Americans: transforming growth factor-beta(1) excess as a mechanism for increased prevalence. Curr Hypertens Rep 2000;2:184–191.

    Article  CAS  PubMed  Google Scholar 

  30. Suthanthiran M, Li B, Song J, et al. Transforming growth factor-beta 1 hyperexpression in African-American hypertensives: A novel mediator of hypertension and/or target organ damage. Proc Natl Acad Sci USA 2000;97:3479–3484.

    Article  CAS  PubMed  Google Scholar 

  31. Jampel HD, Roche N, Stark WJ, Roberts AB. Transforming growth factor-beta in human aqueous humor. Curr Eye Res 1990;9:963–969.

    Article  CAS  PubMed  Google Scholar 

  32. Connor TB, Roberts AB, Sporn MB, et al. Correlation of fibrosis and transforming growth factor-beta type 2 levels in the eye. J Clin Invest 1989;83:1661–1666.

    Article  CAS  PubMed  Google Scholar 

  33. Kokawa N, Sotozono C, Nishida K, Kinoshita S. High total TGF-β2 levels in normal human tears. Curr Eye Res 1996;15:341–342.

    Article  CAS  PubMed  Google Scholar 

  34. Imanishi J, Kamiyama K, Iguchi I, Kita M, Sotozono C, Kinoshita S. Growth factors: importance in wound healing and maintenance of transparency of the cornea. Prog Retin Eye Res 2000;19:113–129.

    Article  CAS  PubMed  Google Scholar 

  35. Nishida K, Sotozono C, Adachi W, Yamamoto S, Yokoi N, Kinoshita S. Transforming growth factor-beta 1,-beta 2 and-beta 3 mRNA expression in human cornea. Curr Eye Res 1995;14:235–241.

    Article  CAS  PubMed  Google Scholar 

  36. Zieske J, Hutcheon A, Guo X, Chung E, Joyce N. TGF-beta receptor types I and II are differentially expressed during corneal epithelial wound repair. Invest Ophthalmol Vis Sci 2001;7:1465–1471.

    Google Scholar 

  37. Hayashi K, Frangieh G, Wolf G, Kenyon K. Expression of transforming growth factor-beta in wound healing of vitamin A-deficient rat corneas. Invest Ophthalmol Vis Sci 1989;30:239–247.

    CAS  PubMed  Google Scholar 

  38. Chen C, Michelini-Norris B, Stevens S, et al. Measurement of mRNAs for TGFss and extracellular matrix proteins in corneas of rats after PRK. Invest Ophthalmol Vis Sci 2000;41:4108–4116.

    CAS  PubMed  Google Scholar 

  39. Blalock TD, Duncan MR, Varela JC, et al. Connective tissue growth factor expression and action in human corneal fibroblast cultures and rat corneas after photorefractive keratectomy. Invest Ophthalmol Vis Sci 2003;44:1879–1887.

    Article  PubMed  Google Scholar 

  40. Thom SB, Myers JS, Rapuano CJ, Eagle RC, Siepser SB, Gomes JA. Effect of topical anti-transforming growth factor-beta on corneal stromal haze after photorefractive keratectomy in rabbits. J Cataract Refract Surg 1997;23:1324–1330.

    CAS  PubMed  Google Scholar 

  41. Myers JS, Gomes JA, Siepser SB, Rapuano CJ, Eagle RC, Thom SB. Effect of transforming growth factor beta 1 on stromal haze following excimer laser photorefractive keratectomy in rabbits. J Refract Surg 1997;13:356–361.

    CAS  PubMed  Google Scholar 

  42. Jester JV, Barry Lane PA, Petroll WM, Olsen DR, Cavanagh HD. Inhibition of corneal fibrosis by topical application of blocking antibodies to TGF beta in the rabbit. Cornea 1997;16:177–187.

    Article  CAS  PubMed  Google Scholar 

  43. Saika S, Miyamoto T, Kawashima Y, et al. Immunolocalization of TGF-beta1,-beta2, and-beta3, and TGF-beta receptors in human lens capsules with lens implants. Graefes Arch Clin Exp Ophthalmol 2000;238:283–293.

    Article  CAS  PubMed  Google Scholar 

  44. Nishi O, Nishi K, Wada K, Ohmoto Y. Expression of transforming growth factor (TGF)-alpha, TGF-beta(2) and interleukin 8 messenger RNA in postsurgical and cultured lens epithelial cells obtained from patients with senile cataracts. Graefes Arch Clin Exp Ophthalmol 1999;237:806–811.

    Article  CAS  PubMed  Google Scholar 

  45. Lois N, Taylor J, McKinnon AD, Smith GC, van’t Hof R, Forrester JV. Effect of TGF-beta2 and anti-TGF-beta2 antibody in a new in vivo rodent model of posterior capsule opacification. Invest Ophthalmol Vis Sci 2005;46:4260–4266.

    Article  PubMed  Google Scholar 

  46. Symonds JG, Lovicu FJ, Chamberlain CG. Posterior capsule opacification-like changes in rat lens explants cultured with TGFbeta and FGF: Effects of cell coverage and regional differences. Exp Eye Res 2005;13:13.

    Google Scholar 

  47. Meacock W, Spalton D, Stanford M. Role of cytokines in the pathogenesis of posterior capsule opacification. Br J Ophthalmol 2000;84:332–336.

    Article  CAS  PubMed  Google Scholar 

  48. Tobari I, Iwaki Y, Miyake K. Effect of tranilast eyedrops in preventing posterior capsule opacification: preliminary report. J Cataract Refract Surg 1999;25:1394–1399.

    Article  CAS  PubMed  Google Scholar 

  49. Lee E, Seomun Y, Hwang K, et al. Overexpression of the transforming growth factor-beta-inducible gene betaig-h3 in anterior polar cataracts. Invest Ophthalmol Vis Sci 2000;41:1840–1845.

    CAS  PubMed  Google Scholar 

  50. Srinivasan Y, Lovicu F, Overbeek P. Lens-specific expression of transforming growth factor beta1 in transgenic mice causes anterior subcapsular cataracts. J Clin Invest 1998;101:625–634.

    Article  CAS  PubMed  Google Scholar 

  51. Ishida I, Saika S, Okada Y, Ohnishi Y. Growth factor deposition in anterior subcapsular cataract. J Cataract Refract Surg 2005;31:1219–1225.

    Article  PubMed  Google Scholar 

  52. Wormstone IM, Tamiya S, Eldred JA, et al. Characterisation of TGF-beta2 signalling and function in a human lens cell line. Exp Eye Res 2004;78:705–714.

    Article  CAS  PubMed  Google Scholar 

  53. Kon CH, Occleston NL, Aylward GW, Khaw PT. Expression of vitreous cytokines in proliferative vitreoretinopathy: a prospective study. Invest Ophthalmol Vis Sci 1999;40:705–712.

    CAS  PubMed  Google Scholar 

  54. Carrington L, McLeod D, Boulton M. IL-10 and antibodies to TGF-beta2 and PDGF inhibit RPE-mediated retinal contraction. Invest Ophthalmol Vis Sci 2000;41:1210–1216.

    CAS  PubMed  Google Scholar 

  55. Glaser BM, Michels RG, Kuppermann BD, Sjaarda RN, Pena RA. Transforming growth factor-β2 for the treatment of full-thickness macular holes. Ophthalmology 1992;99:1162–1173.

    CAS  PubMed  Google Scholar 

  56. Kozy D, Maberley A. Closure of persistent macular holes with human recombinant transforming growth factor-beta 2. Can J Ophthalmol 1996;31:179–182.

    CAS  PubMed  Google Scholar 

  57. Smiddy WE, Glaser BM, Green R, et al. Transforming growth factor beta. A biological chorioretinal glue. Arch Ophthalmol 1989;107:577–580.

    CAS  PubMed  Google Scholar 

  58. Matsumoto M, Yoshimura N, Honda Y. Increased production of transforming growth factor-beta 2 from cultured human retinal pigment epithelial cells by photocoagulation. Invest Ophthalmol Vis Sci 1994;35:4245–4252.

    CAS  PubMed  Google Scholar 

  59. Ie D, Gordon LW, Glaser BM, Pena RA. Transforming growth factor-beta 2 levels increase following retinal laser photocoagulation. Curr Eye Res 1994;13:743–746.

    Article  CAS  PubMed  Google Scholar 

  60. Ishida K, Yoshimura N, Yoshida M, Honda Y. Upregulation of transforming growth factor-beta after panretinal photocoagulation. Invest Ophthalmol Vis Sci 1998;39:801–807.

    CAS  PubMed  Google Scholar 

  61. Yamamoto C, Ogata N, Yi X, et al. Immunolocalization of transforming growth factor beta during wound repair in rat retina after laser photocoagulation. Graefes Arch Clin Exp Ophthalmol 1998;236:41–46.

    Article  CAS  PubMed  Google Scholar 

  62. Roberts AB, Tian F, Byfield SD, et al. Smad3 is key to TGF-beta-mediated epithelial-to-mesenchymal transition, fibrosis, tumor suppression and metastasis. Cytokine Growth Factor Rev 2005;10:10.

    Google Scholar 

  63. Tripathi RC, Li J, Chan WF, Tripathi BJ. Aqueous humor in glaucomatous eyes contains an increased level of TGF-beta 2. Exp Eye Res 1994;59:723–727.

    Article  CAS  PubMed  Google Scholar 

  64. Inatani M, Tanihara H, Katsuta H, Honjo M, Kido N, Honda Y. Transforming growth factor-beta 2 levels in aqueous humor of glaucomatous eyes. Graefes Arch Clin Exp Ophthalmol 2001;239:109–113.

    Article  CAS  PubMed  Google Scholar 

  65. Tripathi RC, Chan WF, Li J, Tripathi BJ. Trabecular cells express the TGF-beta 2 gene and secrete the cytokine. Exp Eye Res 1994;58:523–528.

    Article  CAS  PubMed  Google Scholar 

  66. Zhao X, Ramsey KE, Stephan DA, Russell P. Gene and protein expression changes in human trabecular meshwork cells treated with transforming growth factor-beta. Invest Ophthalmol Vis Sci 2004;45:4023–4034.

    Article  PubMed  Google Scholar 

  67. Lutjen-Drecoll E. Morphological changes in glaucomatous eyes and the role of TGFbeta2 for the pathogenesis of the disease. Exp Eye Res 2005;81:1–4.

    Article  PubMed  CAS  Google Scholar 

  68. Addicks EM, Quigley HA, Green WR, Robin AL. Histologic characteristics of filtering blebs in glaucomatous eyes. Arch Ophthalmol 1983;101:795–798.

    CAS  PubMed  Google Scholar 

  69. Pena J, Taylor A, Ricard C, Vidal I, Hernandez M. Transforming growth factor isoforms in human optic nerve heads. Br J Ophthalmol 1999;83:209–218.

    Article  CAS  PubMed  Google Scholar 

  70. Fukuchi T, Ueda J, Hanyu T, Abe H, Sawaguchi S. Changes in transforming growth factor-beta and platelet-derived growth factor in the optic nerve head in monkey experimental glaucoma. Nippon Ganka Gakkai Zasshi 1999;103:193–200.

    CAS  PubMed  Google Scholar 

  71. Cordeiro MF, Gay JA, Khaw PT. Human Anti-TGF-β2 monoclonal antibody: a new anti-scarring agent for glaucoma filtration surgery. Invest Ophthalmol Vis Sci 1999;40:2225–2234.

    CAS  PubMed  Google Scholar 

  72. Ridet J, Malhotra S, Privat A, Gage F. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 1997;20:570–577.

    Article  CAS  PubMed  Google Scholar 

  73. Cordeiro MF, Halfyard AS, Khaw PT, Fitzke FW, Keegan DJ. Objective assessment of changes at the optic nerve head in a rat model of glaucoma. Invest Ophthalmol Vis Sci 2001;42:S2750.

    Google Scholar 

  74. Yuan L, Neufeld AH. Activated microglia in the human glaucomatous optic nerve head. J Neurosci Res 2001;64:523–532.

    Article  CAS  PubMed  Google Scholar 

  75. Guo L, Moss SE, Alexander RA, Ali RR, Fitzke FW, Cordeiro MF. Retinal ganglion cell apoptosis in glaucoma is related to intraocular pressure (IOP) and IOP-induced effects on extracellular matrix. Invest Ophthalmol Vis Sci 2005;46:175–182.

    Article  PubMed  Google Scholar 

  76. Cordeiro MF. Beyond Mitomycin: TGF-beta and wound healing. Prog Retin Eye Res 2002;21:75–89.

    Article  CAS  PubMed  Google Scholar 

  77. Grisanti S, Szurman P, Warga M, et al. Decorin modulates wound healing in experimental glaucoma filtration surgery: a pilot study. Invest Ophthalmol Vis Sci 2005;46:191–196.

    Article  PubMed  Google Scholar 

  78. Hitchings RA, Grierson I. Clinico pathological correlation in eyes with failed fistulizing surgery. Trans Ophthalmol Soc UK 1983;103:84–88.

    PubMed  Google Scholar 

  79. Jay JL. Rational choice of therapy in primary open angle glaucoma. Eye 1992;6:243–247.

    PubMed  Google Scholar 

  80. Migdal C, Gregory W, Hitchings RA. Long-term functional outcome after early surgery compared with laser and medicine in open-angle glaucoma. Ophthalmology 1994;101:1651–1656.

    CAS  PubMed  Google Scholar 

  81. Thylefors B, Negrel A. The global impact of glaucoma. Bulletin World Health Org 1994;72:323–326.

    CAS  Google Scholar 

  82. Foster A, Johnson GJ. Magnitude and causes of blindness in the developing world. Int Ophthalmol 1990;14:135–140.

    Article  CAS  PubMed  Google Scholar 

  83. Quigley HA. Number of people with glaucoma worldwide. Br J Ophthalmol 1996;80:389–393.

    Article  CAS  PubMed  Google Scholar 

  84. Cordeiro MF. The role of transforming growth factor-β in the conjunctival scarring process following glaucoma filtration surgery. In: Ophthalmology, University of London 1998.

    Google Scholar 

  85. Reichel ML, Cordeiro MF, Alexander RA, Bhattacharya SS, Schultz GS, Khaw PT. A new model of conjunctival scarring in the mouse eye. Br J Ophthalmol 1998;82:1072–1077.

    Article  CAS  PubMed  Google Scholar 

  86. Kay EP, Lee HK, Park KS, Lee SC. Indirect mitogenic effect of transforming growth factor-beta on cell proliferation of subconjunctival fibroblasts. Invest Ophthalmol Vis Sci 1998;39:481–486.

    CAS  PubMed  Google Scholar 

  87. Cordeiro MF, Reichel MB, Gay JA, D’Esposita F, Alexander RA, Khaw PT. TGF-β1,-β2 & β3 in vivo: Effects on normal and Mitomycin-C modulated conjunctival scarring. Invest Ophthalmol Vis Sci 1999;40:1975–1982.

    CAS  PubMed  Google Scholar 

  88. Cordeiro MF, Siriwardena D, Chang L, Khaw PT. Wound healing modulation after glaucoma surgery. Curr Opin Ophthalmol 2000;11:121–126.

    Article  CAS  PubMed  Google Scholar 

  89. Cordeiro MF, Mead A, Ali RR, et al. Novel antisense oligonucleotides targeting TGF-beta inhibit in vivo scarring and improve surgical outcome. Gene Ther 2003;10:59–71.

    Article  CAS  PubMed  Google Scholar 

  90. The Fluorouracil Filtering Surgery Study Group. Fluorouracil filtering surgery study one-year follow-up. Am J Ophthalmol 1989;108:625–635.

    Google Scholar 

  91. Kitazawa Y, Kawase K, Matsushita H, Minobe M. Trabeculectomy with mitomycin: a comparative study with fluorouracil. Arch Ophthalmol 1991;109:1693–1698.

    CAS  PubMed  Google Scholar 

  92. Katz GJ, Higginbotham EJ, Lichter PR, et al. Mitomycin C versus 5-fluorouracil in high-risk glaucoma filtering surgery. Extended follow-up. Ophthalmology 1995;102:1263–1269.

    CAS  PubMed  Google Scholar 

  93. Lamping KA, Belkin JK. 5-Fluorouracil and mitomycin C in pseudophakic patients. Ophthalmology 1995;102:70–75.

    CAS  PubMed  Google Scholar 

  94. Belyea DA, Dan JA, Stamper RL, Lieberman MF, Spener WH. Late onset of sequential multifocal bleb leaks after glaucoma filtration surgery with 5-fluorauracil and mitomycin-C. Am J Ophthalmol 1997;124:40–45.

    CAS  PubMed  Google Scholar 

  95. Greenfield DS, Liebmann JM, Jee J, Ritch R. Late-onset bleb leaks after glaucoma filtering surgery. Arch Ophthalmol 1998;116:443–447.

    CAS  PubMed  Google Scholar 

  96. Parrish R, Minckler DS. “Late endophthalmitis” — filtering surgery time bomb? Ophthalmology 1996;103:1167–1168.

    CAS  PubMed  Google Scholar 

  97. Stamper R, McMenemy M, Lieberman M. Hypotonous maculopathy after trabeculectomy with subconjunctival 5-fluorouracil. Am J Ophthalm 1992;114:544–553.

    CAS  Google Scholar 

  98. Kupin TH, Juzych MS, Shin DH, Khatana AK, Olivier MM. Adjunctive mitomycin C in primary trabeculectomy in phakic eyes. Am J Ophthalmol 1995;119:30–39.

    CAS  PubMed  Google Scholar 

  99. Crowston JG, Akbar AN, Constable PH, Occleston NL, Daniels JT, Khaw PT. Antimetabolites-induced apoptosis in Tenon’s capsule fibroblasts. Invest Ophthalmol Vis Sci 1998;39:449–454.

    CAS  PubMed  Google Scholar 

  100. Siriwardena D, Khaw PT, King AJ, et al. Human antitransforming growth factor beta(2) monoclonal antibody—a new modulator of wound healing in trabeculectomy: a randomized placebo controlled clinical study. Ophthalmology 2002;109:427–431.

    Article  PubMed  Google Scholar 

  101. Nakamura H, Siddiqui SS, Shen X, et al. RNA interference targeting transforming growth factor-beta type II receptor suppresses ocular inflammation and fibrosis. Mol Vis 2004;10:703–711.

    CAS  PubMed  Google Scholar 

  102. Chihara E, Dong J, Ochiai H. Effect. of TGF-β1 suppressor Tranilast on filtering bleb and IOP after glaucoma surgery. Invest Ophthalmol Vis Sci 1999;40 (suppl):Abstract no. 5104.

    Google Scholar 

  103. Cordeiro MF, Balasubramanian L, Ali RR, et al. Effect and localization of a TGF-β1 antisense oligonucleotide in conjunctival scarring — A potential new anti-scarring strategy in glaucoma surgery. Invest Ophthalmol Vis Sci 2000;41:S3957.

    Google Scholar 

  104. Wu-Pong S, Weiss T, Hunt C. Antisense c-myc oligonucleotide cellular uptake and activity. Antisense Res Dev 1994;4:155–163.

    CAS  PubMed  Google Scholar 

  105. Beardsley T. Making antisense. Drugs that turn off genes are entering human tests. Sci Am 1992;266:107–108.

    Article  CAS  PubMed  Google Scholar 

  106. Fakler B, Herlitze S, Amthor B, Zenner H, Ruppersberg J. Short antisense oligonucleotide-mediated inhibition is strongly dependent on oligo length and concentration but almost independent of location of the target sequence. J Biol Chem 1994;269:16,187–16,194.

    CAS  PubMed  Google Scholar 

  107. Tamm I, Dorken B, Hartmann G. Antisense therapy in oncology: new hope for an old idea? Lancet 2001;358:489–497.

    Article  CAS  PubMed  Google Scholar 

  108. Orr R. Technology evaluation: fomivirsen, Isis Pharmaceuticals Inc/CIBA vision. Curr Opin Mol Ther 2001;3:288–294.

    CAS  PubMed  Google Scholar 

  109. Lang K, Peppercorn M. Promising new agents for the treatment of inflammatory bowel disorders. Drugs R D 1999;1:237–244.

    Article  CAS  PubMed  Google Scholar 

  110. Yacyshyn B, Bowen-Yacyshyn M, Jewell L, et al. A placebo-controlled trial of ICAM-1 antisense oligonucleotide in the treatment of Crohn’s disease. Gastroenterology 1998;114:1133–1142.

    Article  CAS  PubMed  Google Scholar 

  111. Crooke S. Basic principles of antisense technology. In: Crooke ST, ed. Antisense Drug Technology: Principles, Strategies and Applications. New York: Marcel Dekker 2001; pp. 1–28.

    Chapter  Google Scholar 

  112. Stephenson M, Zamecnik P. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci USA 1978;75:285–288.

    Article  CAS  PubMed  Google Scholar 

  113. Dean N, Butler M, Monia B, Manoharan M. Pharmacology of 2′-O-(2-methoxy) ethyl — modified antisense oligonucleotides. In: Crooke ST, ed. Antisense Drug Technology: Principles, Strategies and Applications. New York: Marcel Dekker, 2001; pp. 319–338.

    Google Scholar 

  114. Dean NM, Griffey RH. Identification and charecterization of second-generation antisense oligonucleotides. Antisense Nucleic Acid Drug Develop 1997;7:229–233.

    CAS  Google Scholar 

  115. Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004;432:173–178.

    Article  CAS  PubMed  Google Scholar 

  116. Lingor P, Koeberle P, Kugler S, Bahr M. Down-regulation of apoptosis mediators by RNAi inhibits axotomy-induced retinal ganglion cell death in vivo. Brain 2005;128:550–558.

    Article  PubMed  Google Scholar 

  117. Tanihara H, Inatani M, Koga T, Yano T, Kimura A. Proteoglycans in the eye. Cornea 2002;21:S62–S69.

    Article  PubMed  Google Scholar 

  118. Chihara E, Dong J, Ochiai H, Hamada S. Effects of tranilast on filtering blebs: a pilot study. J Glaucoma 2002;11:127–133.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Cordeiro, M.F., Maass, A., Migdal, C., Guo, L. (2008). TGF-β-Related Antifibrotic Strategies in the Eye. In: Transforming Growth Factor-β in Cancer Therapy, Volume I. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-292-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-292-2_42

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-714-3

  • Online ISBN: 978-1-59745-292-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics