Skip to main content

Thrombospondin-Dependent Activation of Latent TGF-β in Fibrosis and Disease

  • Chapter
Transforming Growth Factor-β in Cancer Therapy, Volume I

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1597 Accesses

Abstract

TGF-β is a pleotrophic cytokine with effects on cell growth and survival, immune cell regulation and inflammation, and extracellular matrix remodeling. Its activity must be carefully regulated for homeostasis of the organism. Control of latent TGF-β activation is a major means of regulating appropriate levels of TGF-β activity. The matricellular protein, thrombospondin-1 (TSP1), is an important physiologic regulator of latent TGF-β activation. TSP1 binding to the latent complex through the lysine-arginine-phenylalanine-lysine (KRFK) sequence of TSP1 competes for binding of the leucineserine-lysine-leucine (LSKL) sequence in the latency associated peptide (LAP) of TGF-β to the mature domain of TGF-β, altering folding of the latent complex which renders TGF-β active. In this review, we discuss this and other mechanisms by which TSP1 induces activation of latent TGF-β. We also review the evidence for participation of TSP1 in the regulation of TGF-β activation in renal, pulmonary, hepatic, cardiovascular, and dermal fibrotic diseases. The use of peptide antagonists of TSP1-dependent TGF-β activation as a therapeutic strategy to treat fibrotic disease will be considered. The role of TSP1 in regulating TGF-β activity in cancer and wound healing and in host responses to infectious agents will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Massagué J. The transforming growth factor-beta family. Annu Rev Cell Dev Biol 1990;6:597–641.

    Google Scholar 

  2. Lawrence DA. Transforming growth factor-beta: a general review. Eur Cytokine Netw 1996;7:363–374.

    CAS  PubMed  Google Scholar 

  3. Roberts AB. Molecular and cell biology of TGF-beta. Miner Electrolyte Metab 1998;24:111–119.

    CAS  PubMed  Google Scholar 

  4. Annes JP, Munger JS, Rifkin DB. Making sense of latent TGFbeta activation. J Cell Sci 2003;116:217–224.

    CAS  PubMed  Google Scholar 

  5. Tapiale JMK, Heldin C-H, Keski-Oja J. Latent transforming growth factor-beta 1 associates to fibroblast extrcellular matrix via latent TGF-beta binding protein. J Cell Biol 1994;124:171–181.

    Google Scholar 

  6. LaMarre J, Hayes MA, Wollenberg GK, Hussaini I, Hall SW, Gonias SL. An alpha 2-macroglobulin receptor-dependent mechanism for the plasma clearance of transforming growth factor-beta 1 in mice. J Clin Invest 1991;87:39–44.

    CAS  PubMed  Google Scholar 

  7. Thannickal VJ, Lee DY, White ES, et al. Myofibroblast differentiation by transforming growth factor-beta1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. J Biol Chem 2003;278:12,384–12,389.

    CAS  PubMed  Google Scholar 

  8. Daniels CE, Wilkes MC, Edens M, et al. Imatinib mesylate inhibits the profibrogenic activity of TGF-beta and prevents bleomycin-mediated lung fibrosis. J Clin Invest 2004;114:1308–1316.

    CAS  PubMed  Google Scholar 

  9. Barcellos-Hoff MH. Latency and activation in the control of TGF-beta. J Mammary Gland Biol Neoplasia 1996;1:353–363.

    Google Scholar 

  10. Khalil N. TGF-beta: from latent to active. Microbes Infect 1999;1:1255–1263.

    CAS  PubMed  Google Scholar 

  11. Lawrence DA. Latent-TGF-beta: an overview. Mol Cell Biochem 2001;219:163–170.

    CAS  PubMed  Google Scholar 

  12. Munger JS, Harpel JG, Gleizes PE, Mazzieri R, Nunes I, Rifkin DB. Latent transforming growth factor-beta: structural features and mechanisms of activation. Kidney Int 1997;51:1376–1382.

    CAS  PubMed  Google Scholar 

  13. Murphy-Ullrich JE, Poczatek M. Activation of latent TGF-beta by thrombospondin-1: mechanisms and physiology. Cytokine Growth Factor Rev 2000;11:59–69.

    CAS  PubMed  Google Scholar 

  14. Zhu HJ, Burgess AW. Regulation of transforming growth factor-beta signaling. Mol Cell Biol Res Commun 2001;4:321–330.

    CAS  PubMed  Google Scholar 

  15. Koli K, Saharinen J, Hyytiainen M, Penttinen C, Keski-Oja J. Latency, activation, and binding proteins of TGF-beta. Microsc Res Tech 2001;52:354–362.

    CAS  PubMed  Google Scholar 

  16. Nunes I, Gleizes PE, Metz CN, Rifkin DB. Latent transforming growth factor-beta binding protein domains involved in activation and transglutaminase-dependent cross-linking of latent transforming growth factor-beta. J Cell Biol 1997;136:1151–1163.

    CAS  PubMed  Google Scholar 

  17. Annes JP, Chen Y, Munger JS, Rifkin DB. Integrin alphavbeta6-mediated activation of latent TGF-beta requires the latent TGF-beta binding protein-1. Cell Bio 2004;165:723–734.

    CAS  Google Scholar 

  18. Mazzieri R, Jurukovski V, Obata H, et al. Expression of truncated latent TGF-beta-binding protein modulates TGF-beta signaling. Cell Science 2005;118:2177–2187.

    CAS  Google Scholar 

  19. Sime PJ, Xing Z, Graham FL, Csaky KG, Gauldie J. Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. J Clin Invest 1997; 100:768–776.

    CAS  PubMed  Google Scholar 

  20. Lyons RM, Gentry LE, Purchio AF, Moses HL. Mechanism of activation of latent recombinant transforming growth factor beta 1 by plasmin. J Cell Biol 1990;110:1361–1367.

    CAS  PubMed  Google Scholar 

  21. Lyons RM, Keski-Oja J, Moses HL. Proteolytic activation of latent transforming growth factor-beta from fibroblast-conditioned medium. J Cell Biol 1988;106:1659–1665.

    CAS  PubMed  Google Scholar 

  22. Tapiale JLJ, Saarinen J, Kovanen PT, Keski-Oja J. Human mast cell chymase andeukocyte elastase release latent transforming growth factor beta from the extracellular matrix of cultured human epithelial and endothelial cells. J Biol Chem 1995;270:4689–4696.

    Google Scholar 

  23. Kojima S, Nara K, Rifkin DB. Requirement for transglutaminase in the activation of latent transforming growth factor-beta in bovine endothelial cells. J Cell Biol 1993;121:439–448.

    CAS  PubMed  Google Scholar 

  24. Brugge THKK, Flick MJ, Daugherty CC, Danton MJS, Degen JL. Loss of fibrinogen rescues mice from the pleiotropic effects of plasminogen deficiency. Cell 1996;87:709–719.

    Google Scholar 

  25. Guo M, Mathieu PA, Linebaugh B, Sloane BF, Reiners JJ, Jr. Phorbol ester activation of a proteolytic cascade capable of activating latent transforming growth factor-betaL a process initiated by the exocytosis of cathepsin B. J Biol Chem 2002;277:14,829–14,837.

    CAS  PubMed  Google Scholar 

  26. Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 2000;14:163–176.

    PubMed  Google Scholar 

  27. Abe M, Oda N, Sato Y. Cell-associated activation of latent transforming growth factor-beta by calpain. J Cell Physiol 1998;174:186–193.

    CAS  PubMed  Google Scholar 

  28. Gantt KR, Schultz-Cherry S, Rodriguez N, et al. Activation of TGF-beta by Leishmania chagasi: importance for parasite survival in macrophages. J Immunol 2003;170:2613–2620.

    CAS  PubMed  Google Scholar 

  29. Somanna A, Mundodi V, Gedamu L. Functional analysis of cathepsin B-like cysteine proteases from Leishmania donovani complex. Evidence for the activation of latent transforming growth factor beta. J Biol Chem 2002;277:25,305–25,312.

    CAS  PubMed  Google Scholar 

  30. Schultz-Cherry S, Hinshaw VS. Influenza virus neuraminidase activates latent transforming growth factor beta. J Virol 1996;70:8624–8629.

    CAS  PubMed  Google Scholar 

  31. Munger JS, Huang X, Kawakatsu H, et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 1999;96:319–328.

    CAS  PubMed  Google Scholar 

  32. Annes JP, Rifkin DB, Munger JS. The integrin alphaVbeta6 binds and activates latent TGFbeta3. FEBS Lett 2002;511:65–68.

    CAS  PubMed  Google Scholar 

  33. Rifkin DB. Latent TGF-beta binding proteins: Orchestrators of TGF-beta availability. J Biol Chem 2004;280:7409–7412.

    PubMed  Google Scholar 

  34. Ma LJ, Yang H, Gaspert A, et al. Transforming growth factor-beta-dependent and-independent pathways of induction of tubulointerstitial fibrosis in beta6(-/-) mice. Am J Pathol 2003;163:1261–1273.

    CAS  PubMed  Google Scholar 

  35. Munger JS, Huang X, Kawakatsu H, et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 1999;96:319–328.

    CAS  PubMed  Google Scholar 

  36. Sheppard D. Integrin-mediated activation of transforming growth factor-beta(1) in pulmonary fibrosis. Chest 2001;120:49S–53S.

    CAS  PubMed  Google Scholar 

  37. Pittet JF, Griffiths MJ, Geiser T, et al. TGF-beta is a critical mediator of acute lung injury. J Clin Invest 2001;107:1537–1544.

    CAS  PubMed  Google Scholar 

  38. Goicoechea S, Orr AW, Pallero MA, Eggleton P, Murphy-Ullrich JE. Thrombospondin mediates focal adhesion disassembly through interactions with cell surface calreticulin. J Biol Chem 2000; 275:36,358–36,368.

    CAS  PubMed  Google Scholar 

  39. Goicoechea S, Pallero MA, Eggleton P, Michalak M, Murphy-Ullrich JE. The anti-adhesive activity of thrombospondin is mediated by the N-terminal domain of cell surface calreticulin. J Biol Chem 2002;277:37,219–37,228.

    CAS  PubMed  Google Scholar 

  40. Orr AW, Pedraza CE, Pallero MA, et al. Low density lipoprotein receptor-related protein is a calreticulin coreceptor that signals focal adhesion disassembly. J Cell Biol 2003;161:1179–1189.

    CAS  PubMed  Google Scholar 

  41. Mu D, Cambier S, Fjellbirkeland L, et al. The integrin alpha(v)beta8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-beta1. J Cell Biol 2002;157:493–507.

    CAS  PubMed  Google Scholar 

  42. Cambier S, Gline S, Mu D, et al. Integrin alpha(v)beta8-mediated activation of transforming growth factor-beta by perivascular astrocytes: an angiogenic control switch. Am J Pathol 2005;166:1883–1894.

    CAS  PubMed  Google Scholar 

  43. Fjellbirkeland L, Cambier S, Broaddus VC, et al. Integrin alphavbeta8-mediated activation of transforming growth factor-beta inhibits human airway epithelial proliferation in intact bronchial tissue. Am J Pathol 2003;163:533–542.

    CAS  PubMed  Google Scholar 

  44. Orr AW, Elzie CA, Kucik DF, Murphy-Ullrich JE. Thrombospondin signaling through the calreticulin/LDL receptor-related protein co-complex stimulates random and directed cell migration. J Cell Sci 2003;116:2917–2927.

    CAS  PubMed  Google Scholar 

  45. Sakai K, Sumi Y, Muramatsu H, Hata K, Muramatsu T, Ueda M. Thrombospondin-1 promotes fibroblast-mediated collagen gel contraction caused by activation of latent transforming growth factor beta-1. J Dermatol Sci 2003;31:99–109.

    CAS  PubMed  Google Scholar 

  46. Pociask DA, Sime PJ, Brody AR. Asbestos-derived reactive oxygen species activate TGF-beta1. Lab Invest 2004;84:1013–1023.

    CAS  PubMed  Google Scholar 

  47. Bornstein P. Thrombospondins as matricellular modulators of cell function. J Clin Invest 2001;107:929–934.

    CAS  PubMed  Google Scholar 

  48. Chen H, Herndon ME, Lawler J. The cell biology of thrombospondin-1. Matrix Biol 2000;19:597–614.

    CAS  PubMed  Google Scholar 

  49. Adams JC. Thrombospondins: multifunctional regulators of cell interactions. Annu Rev Cell Dev Biol 2001;17:25–51.

    CAS  PubMed  Google Scholar 

  50. Janat MF, Liau G. Transforming growth factor beta 1 is a powerful modulator of platelet-derived growth factor action in vascular smooth muscle cells. J Cell Physiol 1992;150:232–242.

    CAS  PubMed  Google Scholar 

  51. Majack RA, Mildbrandt J, Dixit VM. Induction of thrombospondin messenger RNA levels occurs as an immediate primary response to platelet-derived growth factor. J Biol Chem 1987;262:8821–8825.

    CAS  PubMed  Google Scholar 

  52. Bornstein P. Thrombospondins: structure and regulation of expression. Faseb J 1992;6:3290–3299.

    CAS  PubMed  Google Scholar 

  53. Poczatek MH, Hugo C, Darley-Usmar V, Murphy-Ullrich JE. Glucose stimulation of transforming growth factor-beta bioactivity in mesangial cells is mediated by thrombospondin-1. Am J Pathol 2000;157:1353–1363.

    CAS  PubMed  Google Scholar 

  54. Tada H, Kuboki K, Nomura K, Inokuchi T. High glucose levels enhance TGF-beta1-thrombospondin-1 pathway in cultured human mesangial cells via mechanisms dependent on glucose-induced PKC activation. J Diabetes Complications 2001;15:193–197.

    CAS  PubMed  Google Scholar 

  55. Raugi GJ, Olerud JE, Gown AM. Thrombospondin in early human wound tissue. J Invest Dermatol 1987;89:551–554.

    CAS  PubMed  Google Scholar 

  56. O’Shea KS, Liu LH, Kinnunen LH, Dixit VM. Role of the extracellular matrix protein thrombospondin in the early development of the mouse embryo. J Cell Biol 1990;111:2713–2723.

    PubMed  Google Scholar 

  57. Reed MJ, Iruela-Arispe L, O’Brien ER, et al. Expression of thrombospondins by endothelial cells. Injury is correlated with TSP-1. Am J Pathol 1995;147:1068–1080.

    CAS  PubMed  Google Scholar 

  58. Dameron KM, Volpert OV, Tainsky MA, Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 1994;265:1582–1584.

    CAS  PubMed  Google Scholar 

  59. Janz A, Sevignani C, Kenyon K, Ngo CV, Thomas-Tikhonenko A. Activation of the myc oncoprotein leads to increased turnover of thrombospondin-1 mRNA. Nucleic Acids Res 2000;28:2268–2275.

    CAS  PubMed  Google Scholar 

  60. Good DJ, Polverini PJ, Rastinejad F, et al. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA 1990;87:6624–6628.

    CAS  PubMed  Google Scholar 

  61. DiPietro LA. Thrombospondin as a regulator of angiogenesis. Exs 1997;79:295–314.

    CAS  PubMed  Google Scholar 

  62. Motegi K, Harada K, Pazouki S, Baillie R, Schor AM. Evidence of a bi-phasic effect of thrombospondin-1 on angiogenesis. Histochem J 2002;34:411–421.

    CAS  PubMed  Google Scholar 

  63. de Fraipont F, Nicholson AC, Feige JJ, Van Meir EG. Thrombospondins and tumor angiogenesis. Trends Mol Med 2001;7:401–407.

    PubMed  Google Scholar 

  64. Lawler J. Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J Cell Mol Med 2002;6:1–12.

    CAS  PubMed  Google Scholar 

  65. Lawler J, Detmar M. Tumor progression: the effects of thrombospondin-1 and-2. Int J Biochem Cell Biol 2004;36:1038–1045.

    CAS  PubMed  Google Scholar 

  66. Ferrari do Outeiro-Bernstein MA, Nunes SS, Andrade AC, Alves TR, Legrand C, Morandi V. A recombinant NH(2)-terminal heparin-binding domain of the adhesive glycoprotein, thrombospondin-1, promotes endothelial tube formation and cell survival: a possible role for syndecan-4 proteoglycan. Matrix Biol 2002;21:311–324.

    CAS  PubMed  Google Scholar 

  67. Elzie CA, Murphy-Ullrich JE. The N-terminus of thrombospondin: the domain stands apart. Int J Biochem Cell Biol 2004;36:1090–1101.

    CAS  PubMed  Google Scholar 

  68. Bornstein P, Agah A, Kyriakides TR. The role of thrombospondins 1 and 2 in the regulation of cell-matrix interactions, collagen fibril formation, and the response to injury. Int J Biochem Cell Biol 2004;36:1115–1125.

    CAS  PubMed  Google Scholar 

  69. Adams JC, Lawler J. The thrombospondins. Int J Biochem Cell Biol 2004;36:961–968.

    CAS  PubMed  Google Scholar 

  70. DiPietro LA, Nissen NN, Gamelli RL, Koch AE, Pyle JM, Polverini PJ. Thrombospondin 1 synthesis and function in wound repair. Am J Pathol 1996;148:1851–1860.

    CAS  PubMed  Google Scholar 

  71. Agah A, Kyriakides TR, Lawler J, Bornstein P. The lack of thrombospondin-1 (TSP1) dictates the course of wound healing in double-TSP1/TSP2-null mice. Am J Pathol 2002;161:831–839.

    CAS  PubMed  Google Scholar 

  72. Schultz-Cherry S, Ribeiro S, Gentry L, Murphy-Ullrich JE. Thrombospondin binds and activates the small and large forms of latent transforming growth factor-beta in a chemically defined system. J Biol Chem 1994;269:26,775–26,782.

    CAS  PubMed  Google Scholar 

  73. Schultz-Cherry S, Murphy-Ullrich JE. Thrombospondin causes activation of latent transforming growth factor-beta secreted by endothelial cells by a novel mechanism. J Cell Biol 1993;122:923–932.

    CAS  PubMed  Google Scholar 

  74. Murphy-Ullrich JE, Schultz-Cherry S, Hook M. Transforming growth factor-beta complexes with thrombospondin. Mol Biol Cell 1992;3:181–188.

    CAS  PubMed  Google Scholar 

  75. Breitkopf K, Sawitza I, Westhoff JH, Wickert L, Dooley S, Gressner AM. Thrombospondin 1 acts as a strong promoter of transforming growth factor beta effects via two distinct mechanisms in hepatic stellate cells. Gut 2005;54:673–681.

    CAS  PubMed  Google Scholar 

  76. Schultz-Cherry S, Chen H, Mosher DF, et al. Regulation of transforming growth factor-beta activation by discrete sequences of thrombospondin 1. J Biol Chem 1995;270:7304–7310.

    CAS  PubMed  Google Scholar 

  77. Ribeiro SM, Poczatek M, Schultz-Cherry S, Villain M, Murphy-Ullrich JE. The activation sequence of thrombospondin-1 interacts with the latency-associated peptide to regulate activation of latent transforming growth factor-beta. J Biol Chem 1999;274:13,586–13,593.

    CAS  PubMed  Google Scholar 

  78. Young GD, Murphy-Ullrich JE. The Tryptophan-rich motifs of the thrombospondin type 1 repeats bind VLAL motifs in the latent transforming growth factor-beta complex. J Biol Chem 2004;279:47,633–47,642.

    CAS  PubMed  Google Scholar 

  79. Young GD, Murphy-Ullrich JE. Molecular interactions that confer latency to transforming growth factor-beta. J Biol Chem 2004;279:38,032–38,039.

    CAS  PubMed  Google Scholar 

  80. Crawford SE, Stellmach V, Murphy-Ullrich JE, et al. Thrombospondin-1 is a major activator of TGF-betal in vivo. Cell 1998;93:1159–1170.

    CAS  PubMed  Google Scholar 

  81. Kondou H, Mushiake S, Etani Y, Miyoshi Y, Michigami T, Ozono K. A blocking peptide for transforming growth factor-betal activation prevents hepatic fibrosis in vivo. J Hepatol 2003;39:742–748.

    CAS  PubMed  Google Scholar 

  82. Daniel C, Wiede J, Krutzsch HC, et al. Thrombospondin-1 is a major activator of TGF-beta in fibrotic renal disease in the rat in vivo. Kidney Int 2004;65:459–468.

    CAS  PubMed  Google Scholar 

  83. Zhou YPM, Berecek KH, Murphy-Ullrich JE. Thrombospondin 1 mediates angiotensin II induction of TGF-beta activation by cardiac and renal cells under both high and low glucose conditions. Biochem Biophys Res Commun 2006;339:633–641.

    CAS  PubMed  Google Scholar 

  84. Zhou Y, Hagood JS, Murphy-Ullrich JE. Thy-1 expression regulates the ability of rat lung fibroblasts to activate transforming growth factor-beta in response to fibrogenic stimuli. Am J Pathol 2004;165:659–669.

    CAS  PubMed  Google Scholar 

  85. Mimura Y, Ihn H, Jinnin M, Asano Y, Yamane K, Tamaki K. Constitutive thrombospondin-1 overexpression contributes to autocrine transforming growth factor-beta signaling in cultured scleroderma fibroblasts. Am J Pathol 2005;166:1451–1463.

    CAS  PubMed  Google Scholar 

  86. Bailly S, Brand C, Chambaz EM, Feige JJ. analysis of small latent transforming growth factor-beta complex formation and dissociation by surface plasmon resonance. Absence of direct interaction with thrombospondins. J Biol Chem 1997;272:16,329–16,334.

    CAS  PubMed  Google Scholar 

  87. Yehualaeshet T, O’Connor R, Green-Johnson J, et al. Activation of rat alveolar macrophage-derived latent transforming growth factor beta-1 by plasmin requires interaction with thrombospondin-1 and its cell surface receptor, CD36. Am J Pathol 1999;155:841–851.

    CAS  PubMed  Google Scholar 

  88. Asch AS, Silbiger S, Heimer E, Nachman RL. Thrombospondin sequence motif (CSVTCG) is responsible for CD36 binding. Biochem Biophys Res Commun 1992;182:1208–1217.

    CAS  PubMed  Google Scholar 

  89. Harpel JG, Schultz-Cherry S, Murphy-Ullrich JE, Rifkin DB. Tamoxifen and estrogen effects on TGF-beta formation: role of thrombospondin-1, alphavbeta3, and intergrin-associated protein. Biochem Biophys Res Commun 2001;284:11–14.

    CAS  PubMed  Google Scholar 

  90. Sakamoto UMA, Tamagawa H, Wang G-P, Horiuchi S. Specific interaction of oxidized low-density lipoprotein with thrombospondin-1 inhibits transforming growth factor-beta from its activation. Atherosclerosis. 2005;18:85–93.

    Google Scholar 

  91. Ludlow A, Yee KO, Lipman R, et al. Characterization of integrin beta6 and thrombospondin-1 double-null mice. J Cell Mol Med 2005;9:421–437.

    CAS  PubMed  Google Scholar 

  92. Hugo C. The thrombospondin 1-TGF-beta axis in fibrotic renal disease. Nephrol Dial Transplant 2003;18:1241–1245.

    CAS  PubMed  Google Scholar 

  93. Hugo C, Kang DH, Johnson RJ. Sustained expression of thrombospondin-1 is associated with the development of glomerular and tubulointerstitial fibrosis in the remnant kidney model. Nephron 2002;90:460–470.

    CAS  PubMed  Google Scholar 

  94. Daniel C, Takabatake Y, Mizui M, et al. Antisense oligonucleotides against thrombospondin-1 inhibit activation of TGF-beta in fibrotic renal disease in the rat in vivo. Am J Pathol 2003;163:1185–1192.

    CAS  PubMed  Google Scholar 

  95. Meek RL, Cooney SK, Flynn SD, et al. Amino acids induce indicators of response to injury in glomerular mesangial cells. Am J Physiol Renal Physiol 2003;285:F79–F86.

    CAS  PubMed  Google Scholar 

  96. Zhou L, Isenberg J, Cao Z, Roberts DD. Type I collagen is a molecular target for inhibiton of angiogenesis by endogenous thrombospondin-1. Oncogene 2005;1:1–10.

    Google Scholar 

  97. Bayraktar M, Dundar S, Kirazli S, Teletar F. Platelet factor 4, beta-thromboglobulin and thrombospondin levels in type I diabetes mellitus patients. J Int Med Res 1994;22:90–94.

    CAS  PubMed  Google Scholar 

  98. Wahab NA, Schaefer L, Weston BS, et al. Glomerular expression of thrombospondin-1, transforming growth factor beta and connective tissue growth factor at different stages of diabetic nephropathy and their interdependent roles in mesangial response to diabetic stimuli. Diabetologia 2005;48:2650–2660.

    CAS  PubMed  Google Scholar 

  99. Zhang XMSF, Xv ZY, Yan ZY, Han S. Expression changes of thrombospondin-1 and neuropeptide Y in myocardium of STZ-induced rats. Int J Cardiol 2005;105:192–197.

    PubMed  Google Scholar 

  100. Stenia OI, Krukovets I, Wang K, et al. Increased expression of thrombospondin-1 in vessel wall of diabetic Zucker rat. Circulation 2003;107:3209–3215.

    Google Scholar 

  101. Kim JHKB, Moon KC, Hong HK, Lee HS. Activation of the TGF-beta/Smad signaling pathway in focal segmental glomerulosclerosis. Kidney International 2003;64:1715–1721.

    CAS  PubMed  Google Scholar 

  102. Wang S, Wu X, Lincoln TM, Murphy-Ullrich JE. Expression of constitutively active cGMP-dependent protein kinase prevents glucose stimulation of thrombospondin 1 expression and TGF-beta activity. Diabetes 2003;52:2144–2150.

    CAS  PubMed  Google Scholar 

  103. Wang S, Shiva S, Poczatek MH, Darley-Usmar V, Murphy-Ullrich JE. Nitric oxide and cGMP-dependent protein kinase regulation of glucose-mediated thrombospondin 1-dependent transforming growth factor-beta activation in mesangial cells. J Biol Chem 2002;277:9880–9888.

    CAS  PubMed  Google Scholar 

  104. Lim DS, Lutucuta S, Bachireddy P, et al. Angiotensin II blockade reverses myocardial fibrosis in a transgenic mouse model of human hypertrophic cardiomyopathy. Circulation 2001;103:789–791

    CAS  PubMed  Google Scholar 

  105. Noble NA, Border WA. Angiotensin II in renal fibrosis: should TGF-beta rather than blood pressure be the therapeutic target? Semin Nephrol 1997;17:455–466.

    CAS  PubMed  Google Scholar 

  106. Gaedeke J, Peters H, Noble NA, Border WA. Angiotensin II. TGF-beta and renal fibrosis. Contrib Nephrol 2001:153–160.

    Google Scholar 

  107. Naito T, Masaki T, Nikolic-Paterson DJ, Tanji C, Yorioka N, Kohno N. Angiotensin II induces thrombospondin-1 production in human mesangial cells via p38 MAPK and JNK: a mechanism for activation of latent TGF-betal. Am J Physiol Renal Physiol 2004;286:F278–F287.

    CAS  PubMed  Google Scholar 

  108. Belmadani S, Bernol J, Wei C-C, et al. A thrombospondin-1 antagonist of TGF-β activation blocks cardiomyopathy in rats with diabetes and elevated angiotensin II. manuscript submitted.

    Google Scholar 

  109. Yang YL, Chuang LY, Guh JY, et al. Thrombospondin-1 mediates distal tubule hypertrophy induced by glycated albumin. Biochem J 2004;379:89–97.

    CAS  PubMed  Google Scholar 

  110. Yehualaeshet T, O’Connor R, Begleiter A, Murphy-Ullrich JE, Silverstein R, Khalil N. A CD36 synthetic peptide inhibits bleomycin-induced pulmonary inflammation and connective tissue synthesis in the rat. Am J Respir Cell Mol Biol 2000;23:204–212.

    CAS  PubMed  Google Scholar 

  111. Azuma A, Li YJ, Abe S, et al. Interferon-β inhibits bleomycin-induced lung fibrosis by decreasing TGF-β and thrombospondin. Am J Respir Cell Mol Biol 2004;32:93–98.

    PubMed  Google Scholar 

  112. Morishima Y, Nomura A, Uchida Y, et al. Triggering the induction of myofibroblast and fibrogenesis by airway epithelial shedding. Am J Respir Cell Mol Biol 2001;24:1–11.

    CAS  PubMed  Google Scholar 

  113. Wesselkamper SCCL, Henning LN, Borchers MT, et al. Gene expression changes during the development of acute lung injury: role of transforming growth factor beta. Am J Respir Crit Care Med 2005;172:1399–1411.

    PubMed  Google Scholar 

  114. El-Youssef M, Mu Y, Huang L, Stellmach V, Crawford SE. Increased expression of transforming growth factor-beta1 and thrombospondin-1 in congenital hepatic fibrosis: possible role of the hepatic stellate cell. J Pediatr Gastroenterol Nutr 1999;28:386–392.

    CAS  PubMed  Google Scholar 

  115. Wang XL, Liu SX, Wilcken DE. Circulating transforming growth factor beta 1 and coronary artery disease. Cardiovasc Res 1997;34:404–410.

    CAS  PubMed  Google Scholar 

  116. Chamberlain J. Transforming growth factor-beta: a promising target for anti-stenosis therapy. Cardiovasc Drug Rev 2001;19:329–344.

    CAS  PubMed  Google Scholar 

  117. Robertson AK, Rudling M, Zhou X, Gorelik L, Flavell RA, Hansson GK. Disruption of TGF-beta signaling in T cells accelerates atherosclerosis. J Clin Invest 2003;112:1342–1350.

    CAS  PubMed  Google Scholar 

  118. Hosomi N, Noma T, Ohyama H, Takahashi T, Kohno M. Vascular proliferation and transforming growth factor-beta expression in pre-and early stage of diabetes mellitus in Otsuka Long-Evans Tokushima fatty rats. Atherosclerosis 2002;162:69–76.

    CAS  PubMed  Google Scholar 

  119. Riessen R, Axel DI, Fenchel M, Herzog UU Rossmann H, Karsch KR. Effect of HMG-CoA reductase inhibitors on extracellular matrix expression in human vascular smooth muscle cells. Basic Res Cardiol 1999;94:322–332.

    CAS  PubMed  Google Scholar 

  120. Wight TN, Raugi GJ, Mumby SM, Bornstein P. Light microscopic immunolocation of thrombospondin in human tissues. J Histochem Cytochem 1985;33:295–302.

    CAS  PubMed  Google Scholar 

  121. Riessen R, Kearney M, Lawler J, Isner JM. Immunolocalization of thrombospondin-1 in human atherosclerotic and restenotic arteries. Am Heart J 1998;135:357–364.

    CAS  PubMed  Google Scholar 

  122. Canfield AE, Farrington C, Dziobon MD, et al. The involvement of matrix glycoproteins in vascular calcification and fibrosis: an immunohistochemical study. J Pathol 2002;196:228–234.

    CAS  PubMed  Google Scholar 

  123. Chamberlain J, Gunn J, Francis SE, et al. TGFbeta is active, and correlates with activators of TGFbeta, following porcine coronary angioplasty. Cardiovasc Res 2001;50:125–136.

    CAS  PubMed  Google Scholar 

  124. Frangogiannis NGRG, Dewald O, Zymek P, et al. Critical role of endogenous thrombospondin-1 in preventing expansion of healing myocardial infacts. Circulation 2005;111:2935–2942.

    CAS  PubMed  Google Scholar 

  125. Chipev CC, Simman R, Hatch G, Katz AE, Siegel DM, Simon M. Myofibroblast phenotype and apoptosis in keloid and palmar fibroblasts in vitro. Cell Death Differ 2000;7:166–176.

    CAS  PubMed  Google Scholar 

  126. Cauchard JH, Berton A, Godeau G, Hornebeck W, Bellon G. Activation of latent transforming growth factor beta 1 and inhibition of matrix metalloprotease activity by a thrombospondin-like tripeptide linked to elaidic acid. Biochem Pharmacol 2004;67:2013–2022.

    CAS  PubMed  Google Scholar 

  127. Muraoka-Cook RS, Dumont N, Arteaga CL. Dual role of transforming growth factor beta in mamary tumorigenesis and metastatic progression. Clin Cancer Res 2005;11:937s–943s.

    CAS  PubMed  Google Scholar 

  128. Wakefield LM, Roberts AB. TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 2002;12:22–29.

    CAS  PubMed  Google Scholar 

  129. Kawataki T, Naganuma H, Sasaki A, Yoshikawa H, Tasaka K, Nukui H. Correlation of thrombospondin-1 and transforming growth factor-beta expression with malignancy of glioma. Neuropathology 2000;20:161–169.

    CAS  PubMed  Google Scholar 

  130. Sasaki A, Naganuma H, Satoh E, Kawataki T, Amagasaki K, Nukui H. Participation of thrombospondin-1 in the activation of latent transforming growth factor-beta in malignant glioma cells. Neurol Med Chir (Tokyo) 2001;41:253–258; discussion 258–259.

    CAS  Google Scholar 

  131. Miao WM, Seng WL, Duquette M, Lawler P, Laus C, Lawler J. Thrombospondin-1 type 1 repeat recombinant proteins inhibit tumor growth through transforming growth factor-beta-dependent and-independent mechanisms. Cancer Res 2001;61:7830–7839.

    CAS  PubMed  Google Scholar 

  132. Yee KO, Streit M, Hawighorst T, Detmar M, Lawler J. Expression of the type-1 repeats of thrombospondin-1 inhibits tumor growth through activation of transforming growth factor-beta. Am J Pathol 2004;165:541–552.

    CAS  PubMed  Google Scholar 

  133. Iruela-Arispe ML, Lombardo M, Krutzsch HC, Lawler J, Roberts DD. Inhibition of angiogenesis by thrombospondin-1 is mediated by 2 independent regions within the type 1 repeats. Circulation 1999; 100:1423–1431.

    CAS  PubMed  Google Scholar 

  134. Bleuel K, Popp S, Fusenig NE, Stambridge EJ, Boukamp P. Tumor suppression in human skin carcinoma cells by chromosome 15 transfer or thrombospondin-1 overexpression through halted tumor vascularization. Proc Natl Acad Sci USA 1999;96:2065–2070.

    CAS  PubMed  Google Scholar 

  135. Bertin N, Clezardin P, Kubiak R, Frappart L. Thrombospondin-1 and-2 messenger RNA expression in normal, benign, and neoplastic human breast tissues correlation with prognostic factors, tumor angiogenesis, and fibroblastic desmoplasia. Cancer Res 1997;57:396–399.

    CAS  PubMed  Google Scholar 

  136. Filleur S, Volpert OV, Degeorges A, et al. In vivo mechanisms by which tumors producing thrombospondin 1 bypass its inhibitory effects. Genes Dev 2001;15:1373–1382.

    CAS  PubMed  Google Scholar 

  137. Mansfield PJ, Suchard SJ. Thrombospondin promotes chemotaxis and haptotaxis of human peripheral blood monocytes. J Immunol 1994;153:4219–4229.

    CAS  PubMed  Google Scholar 

  138. Zamiri P, Masli S, Kitaichi N, Taylor AW, Streilein JW. Thrombospondin plays a vital role in the immune privilege of the eye. Invest Ophthalmol Vis Sci 2005;46:908–919.

    PubMed  Google Scholar 

  139. Pierson BA, Gupta K, Hu WS, Miller JS. Human natural killer cell expransion is regulated by thrombospondin-mediated activation of transforming growth factor-beta 1 and independent accessory cell-derived contact and soluble factors. Blood 1996;87:180–189.

    CAS  PubMed  Google Scholar 

  140. Doyen V, Rubio M, Braun D, et al. Thrombospondin 1 is an autocrine negative regulator of human dendritic cell activation. J Exp Med 2003;198:1277–1283.

    CAS  PubMed  Google Scholar 

  141. Beppu R, Nakamura K, Miyajima-Uchida H, et al. Soluble thrombospondin-1 suppresses T cell proliferation and enhances IL-10 secretion by antigen presenting cells stimulated with phytohemagglutinin. Immunol Invest 2001;30:143–156.

    CAS  PubMed  Google Scholar 

  142. Li SS, Forslow A, Sundqvist KG. Autocrine regulation of T cell motility by calreticulin-thrombospondin-1 interaction. J Immunol 2005;174:654–661.

    CAS  PubMed  Google Scholar 

  143. Li Z, Calzada MJ, Sipes JM, et al. Interactions of thrombospondins with alpha4betal integrin and CD47 differentially modulate T cell behavior. J Cell Biol 2002;157:509–519.

    CAS  PubMed  Google Scholar 

  144. Kuznetsova SA, Roberts DD. Functional regulation of T lymphocytes by modulatory extracellular matrix proteins. Int J Biochem Cell Biol 2004;36:1126–1134.

    CAS  PubMed  Google Scholar 

  145. Weiss DJ, Evanson OA, Deng M, Abrahamsen MS. Sequential patterns of gene expression by bovine monocyte-derived macrophages associated with ingestion of mycobacterial organisms. Microb Pathog 2004;37:215–224.

    CAS  PubMed  Google Scholar 

  146. Omer FM, de Souza JB, Corran PH, Sultan AA, Riley EM. Activation of transforming growth factor beta by malaria parasite-derived metalloproteinases and a thrombospondin-like molecule. J Exp Med 2003;198:1817–1827.

    CAS  PubMed  Google Scholar 

  147. Blakytny R, Ludlow A, Martin GE, et al. Latent TGF-beta 1 activation by platelets. J Cell Physiol 2004;199:67–76.

    CAS  PubMed  Google Scholar 

  148. Tolsma SS, Volpert OV, Good DJ, Frazier WA, Polverini PJ, Bouck N. Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. J Cell Biol 1993;122:497–511.

    CAS  PubMed  Google Scholar 

  149. Ihara Y, Manabe S, Kanda M, et al. Increased expression of protein C-mannosylation in the aortic vessels of diabetic Zucker rats. Glycobiology 2005;15:383–392.

    CAS  PubMed  Google Scholar 

  150. Hofsteenge J, Huwiler KG, Macek B, et al. C-mannosylation and O-fucosylation of the thrombospondin type 1 module. J Biol Chem 2001;276:6485–6498.

    CAS  PubMed  Google Scholar 

  151. Grainger DJ, Frow EK. Thrombospondin 1 does not activate transforming growth factor beta 1 in a chemically defined system or in smooth-muscle-cell cultures. Biochem J 2000;350(Pt 1):291–298.

    CAS  PubMed  Google Scholar 

  152. DuBose KB, Talbert MA, Zayzafoon M, Murphy-Ullrich JE. Thrombospondin-1 regulates human mesenchymal stem cell differentiation through control of latent TGF-β activation, in revision.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Murphy-Ullrich, J.E. (2008). Thrombospondin-Dependent Activation of Latent TGF-β in Fibrosis and Disease. In: Transforming Growth Factor-β in Cancer Therapy, Volume I. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-292-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-292-2_34

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-714-3

  • Online ISBN: 978-1-59745-292-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics