Skip to main content

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 448))

Summary

Pharmacological treatment in Alzheimer's disease (AD) accounts for 10–20% of direct costs, and fewer than 20% of AD patients are moderate responders to conventional drugs (donepezil, rivastigmine, galantamine, meman tine), with doubtful cost-effectiveness. Both AD pathogenesis and drug metabolism are genetically regulated complex traits in which hundreds of genes cooperatively participate. Structural genomics studies demonstrated that more than 200 genes might be involved in AD pathogenesis regulating dysfunctional genetic networks leading to premature neuronal death. The AD population exhibits a higher genetic variation rate than the control population, with absolute and relative genetic vari ations of 40–60% and 0.85–1.89%, respectively. AD patients also differ in their genomic architecture from patients with other forms of dementia. Functional genomics studies in AD revealed that age of onset, brain atrophy, cerebrovascular hemodynamics, brain bioelectrical activity, cognitive decline, apoptosis, immune function, lipid metabolism dyshomeostasis, and amyloid deposition are associated with AD-related genes. Pioneering pharmacogenomics studies also demonstrated that the therapeutic response in AD is genotype-specific, with apolipoprotein E (APOE) 4/4 carriers the worst responders to conventional treatments. About 10–20% of Caucasians are carriers of defective cytochrome P450 (CYP) 2D6 polymorphic variants that alter the metabolism and effects of AD drugs and many psychotropic agents currently administered to patients with dementia. There is a moderate accumulation of AD-related genetic variants of risk in CYP2D6 poor metabolizers (PMs) and ultrarapid metabolizers (UMs), who are the worst respond ers to conventional drugs. The association of the APOE-4 allele with specific genetic variants of other genes (e.g., CYP2D6, angiotensin-converting enzyme [ACE]) negatively modulates the therapeutic response to multifactorial treatments affecting cognition, mood, and behavior. Pharmacogenetic and pharmacogenomic factors may account for 60–90% of drug variability in drug disposition and pharma-codynamics. The incorporation of pharmacogenetic/pharmacogenomic protocols to AD research and clinical practice can foster therapeutics optimization by helping to develop cost-effective pharmaceuticals and improving drug efficacy and safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cacabelos, R. (2001) Psychogeriatric research. A conceptual introduction to geriatric neuroscience. Psychogeriatrics, 1, 158–188.

    Google Scholar 

  2. Langa, K.M., Foster, N.L., Larson, E.B. (2004) Mixed dementia: emerging concepts and therapeutic implications. JAMA, 292, 2901–2908.

    CAS  PubMed  Google Scholar 

  3. Cacabelos, R., Fernández-Novoa, L., Lombardi, V., Corzo, L., Pichel, V., Kubota, Y. (2003) Cerebrovascular risk factors in Alzheimer's disease: Brain hemodynamics and pharmacogenomic implications. Neurol. Res., 25, 567–580.

    CAS  PubMed  Google Scholar 

  4. Wimo, A,. (2004) Cost effectiveness of cholinesterase inhibitors in the treatment of Alzheimer's disease: a review with methodological considerations. Drug Aging, 21, 279–295.

    CAS  Google Scholar 

  5. Campbell, D.E., Lynn, J., Louis, T.A., Shugarman, L.R. (2004) Medicare program expenditures associated with hospice use. Ann. Intern. Med., 140, 269–277.

    PubMed  Google Scholar 

  6. Cacabelos, R., Alvarez, X.A., Lombardi, V., et al. (2000) Pharmacological treatment of Alzheimer disease: From psychotropic drugs and cholinesterase inhibitors to pharmacogenomics. Drugs Today, 36, 415–499.

    CAS  PubMed  Google Scholar 

  7. Giacobini, E. (2006) Cholinesterases in human brain: the effect of cholinesterase inhibitors on Alzheimer's disease and related disorders. In: The brain cholinergic system in health and disease. Giacobini, E., Pepeu, G. (eds.), Informa Healthcare, Oxon, pp. 235–264.

    Google Scholar 

  8. Clegg, A., Bryant, J., Nicholson, T., et al. (2001) Clinical and cost-effectiveness of donepezil, rivastigmine and galantamine for Alzheimer's disease: a rapid and systematic review. Health Technol. Assess., 5, 1–137.

    Google Scholar 

  9. Loveman, E., Green, C., Kirby, J., et al. (2006) The clinical and cost-effectiveness of donepezil, rivastigmine, galantamine and memantine for Alzheimer's disease. Health Technol. Assess., 10, 1–176.

    Google Scholar 

  10. International Human Genome Sequencing Consortium. (2004) Finishing the euchromatic sequence of the human genome. Nature, 431, 931–945.

    Google Scholar 

  11. Subramanian, G., Adams, M.D., Venter, J.C., Broder, S. (2001) Implications of the human genome for understanding human biology and medicine. JAMA, 286, 2296–2307.

    CAS  PubMed  Google Scholar 

  12. Cacabelos, R., Fernández-Novoa, L., Lombardi, V., Kubota, Y., Takeda, M. (2005) Molecular genetics of Alzheimer's disease and aging. Meth. Find. Exp. Clin. Pharmacol., 27(suppl. A), 1–573.

    Google Scholar 

  13. Cacabelos, R. (2003) The application of functional genomics to Alzheimer's disease. Pharmacogenomics, 4, 597–621.

    CAS  PubMed  Google Scholar 

  14. Cacabelos, R., Alvarez, A., Fernández-Novoa, L., Lombardi, V.R.M. (2000) A pharmacogenomic approach to Alzheimer's disease. Acta Neurol. Scand., 176(suppl.), 12–19.

    CAS  Google Scholar 

  15. Cacabelos, R. (2002) Pharmacogenomics in Alzheimer's disease. Min. Rev. Med. Chem., 2, 59–84.

    CAS  Google Scholar 

  16. Cacabelos, R. (2002) Pharmacogenomics for the treatment of dementia. Ann. Med., 34, 357–379.

    CAS  PubMed  Google Scholar 

  17. Roses, A.D. (2004) Pharmacogenetics and drug development: the path to safer and more effective drugs. Nature Rev. Genet., 5, 645–656.

    CAS  PubMed  Google Scholar 

  18. Cacabelos, R. (2005) Pharmacogenomics and therapeutic prospects in Alzheimer's disease. Exp. Opin. Pharmacother., 6, 1967–1987.

    CAS  Google Scholar 

  19. Cacabelos, R. (2005) Pharmacogenomics, nutrigenomics and therapeutic optimization in Alzheimer's disease. Aging Health, 1, 303–348.

    CAS  Google Scholar 

  20. Cacabelos, R., Takeda, M. (2006) Pharmacogenomics, nutrigenomics and future therapeutics in Alzheimer's disease. Drugs Future, 31(suppl. B), 5–146.

    Google Scholar 

  21. Goldstein, D.B., Tate, S.K., Sisodiya, S.M. (2003) Pharmacogenetics goes genomic. Nat. Rev. Genet., 4, 937–947.

    CAS  PubMed  Google Scholar 

  22. Austin, C.P. (2004) The impact of the completed human genome sequence on the development of novel therapeutics for human disease. Annu. Rev. Med., 55, 1–13.

    CAS  PubMed  Google Scholar 

  23. Selkoe, D.J., Podlisny, M.B. (2002) Deciphering the genetic basis of Alzheimer's disease. Annu. Rev. Genomics Hum. Genet., 3, 67–99.

    CAS  PubMed  Google Scholar 

  24. Suh, Y.-H., Checler, F. (2002) Amyloid precursor protein, presenilins, and ?-synuclein: Molecular pathogenesis and pharmacological applications in Alzheimer's disease. Pharmacol. Rev., 54, 469–525.

    CAS  PubMed  Google Scholar 

  25. Cacabelos, R., Fernández-Novoa, L., Corzo, L., et al. (2004) Phenotypic profiles and functional genomics in dementia with a vascular component. Neurol. Res., 26, 459–480.

    CAS  PubMed  Google Scholar 

  26. Nebert, D.W., Jorge-Nebert, L.F. (2002) Pharmacogenetics and pharmacogenomics. In: Emery and Rimoin's principles and practice of medical genetics, 4th ed., Rimoin, D.L., Connor, J.M., Pyeritz, R., Korf, B.R. (eds.), Churchill-Livingstone, Edinburgh, pp. 590–631.

    Google Scholar 

  27. Evans, W.E., Johnson, J.A. (2001) Pharmacogenomics: the inherited basis for interindividual differences in drug response. Annu. Rev. Genomics Hum. Genet., 2, 9–39.

    CAS  PubMed  Google Scholar 

  28. Weinshilboum, R.M., Wang, L. (2006) Pharmacogenetics and pharmacogenomics: Development, science, and translation. Annu. Rev. Genomics Hum. Genet., 7, 223–245.

    CAS  PubMed  Google Scholar 

  29. Motulski, A.G. (2002) From pharmacogenetics and ecogenetics to pharmacogenomics. Med. Secoli, 14, 683–705.

    Google Scholar 

  30. Weinshilboum, R. (2003) Inheritance and drug response. N. Engl. J. Med., 348, 529–537.

    PubMed  Google Scholar 

  31. Evans, W.E., McLeod, H.L. (2003) Pharmacogenomics–drug disposition, drug targets, and side effects. N. Engl. J. Med., 348, 538–549.

    CAS  PubMed  Google Scholar 

  32. Ordovas, J.M., Corella, D. (2004) Nutritional genomics. Annu. Rev. Genomics Hum. Genet., 5, 71–118.

    CAS  PubMed  Google Scholar 

  33. Muller, M., Kersten, S. (2003) Nutrigenomics: goals and strategies. Nature Rev. Genet., 4, 315–322.

    PubMed  Google Scholar 

  34. Kaput, J., Rodríguez, R.L. (2004) Nutritional genomics: the next frontier in the postgenomic era. Physiol. Genomics, 16, 166–177.

    CAS  PubMed  Google Scholar 

  35. Stover, P.J. (2004) Nutritional genomics. Physiol. Genomics, 16, 161–165.

    CAS  PubMed  Google Scholar 

  36. Mutch, D.M., Wahli, W., Williamson, G. (2005) Nutrigenomics and nutrigenetics: the emerging faces of nutrition. FASEB J., 19, 1602–1616.

    CAS  PubMed  Google Scholar 

  37. Cacabelos, R. (1997) Dementia. In: Clinical Psychiatry, Jobe, T.H., Gaviria, M., Kovilparambil, A. (eds.), Blackwell Science, Malden, MA, pp. 73–122.

    Google Scholar 

  38. Doshi, J.A., Shaffer, T., Briesacher, B.A. (2005) National estimates of medication use in nursing homes: findings from 1997 Medicare Current Beneficiary Survey and the 1996 Medical Expenditure Survey. J. Am. Geriatr. Soc., 53, 438–443.

    PubMed  Google Scholar 

  39. Percudani, M., Barbui, C., Fortino, I., Petrovich, L. (2005) Antidepressant drugs prescribing among elderly subjects: a population-based study. Int. J. Geriatr. Psychiatry, 20, 113–118.

    PubMed  Google Scholar 

  40. Fialová, D., Topinková, E., Gambassi, G., et al. (2005) Potentially inappropriate medication use among elderly home care patients in Europe. JAMA, 293, 1348–1358.

    PubMed  Google Scholar 

  41. Simon, S.R., Chan, K.A., Soumerai, S.B., et al. (2005) Potentially inappropriate medication use by elderly persons in U.S. health maintenance organizations, 2000–2001. J. Am. Geriatr. Soc., 53, 227–232.

    PubMed  Google Scholar 

  42. Cacabelos, R. (2007) Molecular pathology and pharmacogenomics in Alzheimer's disease: Polygenic-related effects of multifactorial treatments on cognition, anxiety, and depression. Meth. Find. Exper. Clin. Pharmacol., 29(suppl. B), 1–91.

    CAS  Google Scholar 

  43. Bogerts, B. (1993) Alois Alzheimer. Am. J. Psychiatry, 150, 12.

    Google Scholar 

  44. O'Brien, C. (1996) Auguste D. and Alzheimer's disease. Science, 273, 28.

    PubMed  Google Scholar 

  45. Maurer, K., Volk, S., Gerbaldo, H. (1997) Auguste D and Alzheimer's disease. Lancet, 349, 1546–1549.

    CAS  PubMed  Google Scholar 

  46. Klunemann, H.H., Fronhofer, W., Wurster, H., Fischer, W., Ibach, B., Klein, H.E. (2002) Alzheimer's second patient: Johann F. and his family. Ann. Neurol., 52, 520–523.

    PubMed  Google Scholar 

  47. Cacabelos, R. (1999) Textbook of neurogerontology and neurogeriatrics. Alzheimer disease and other dementias. I. Epidemiology and genetics, Masson, Barcelona.

    Google Scholar 

  48. Tanzi, R.E., Kovacs, D.M., Kim, T.W., et al. (1996) The gene defects responsible for familial Alzheimer's disease. Neurobiol. Dis., 3, 159–168.

    CAS  PubMed  Google Scholar 

  49. Schelleenberg, G.D., D'Souza, I., Poorkaj, P. (2000) The genetics of Alzheimer's disease. Curr. Psychiatry Rep., 2, 158–164.

    Google Scholar 

  50. St. George-Hyslop, P.H. (2000) Genetic factors in the genesis of Alzheimer's disease. Ann.N.Y. Acad. Sci., 924, 1–7.

    CAS  PubMed  Google Scholar 

  51. Farrer, L.A., Myers, R.H., Connor, L., Cupples, L.A., Growdon, J.H. (1991) Segregation analysis reveals evidence of a major gene for Alzheimer disease. Am. J. Hum. Genet., 48, 1026–1033.

    CAS  PubMed  Google Scholar 

  52. Farrer, L.A., Myers, R.H., Cupples, L.A., et al. (1990) Transmission and age-at-onset patterns in familial Alzheimer disease: evidence for heterogeneity. Neurology, 40, 395–403.

    CAS  PubMed  Google Scholar 

  53. Bowirrat, A., Friedland, R.P., Farrer, L., Baldwin, C., Korczyn, A.D. (2002) Genetic and environmental risk factors for Alzheimer's disease in Israeli Arabs. J. Mol. Neurosci., 19, 239–245.

    CAS  PubMed  Google Scholar 

  54. Breitner, J.C.S., Silverman, J.M., Mohs, R.C., Davis, K.L. (1988) Familial aggregation in Alzheimer's disease: comparison of risk among relatives of early-and late-onset cases, and among male and female relatives in successive generations. Neurology, 38, 207–212.

    CAS  PubMed  Google Scholar 

  55. Fitch, N., Becker, R., Heller, A. (1988) The inheritance of Alzheimer's disease: a new interpretation. Ann. Neurol., 23, 14–19.

    CAS  PubMed  Google Scholar 

  56. McKusick, V. (1998) Mendelian inheritance in man: catalogs of human genes and genetic disorders, 12th ed., Johns Hopkins University Press, Baltimore.

    Google Scholar 

  57. The National Center for Biotechnology Information (NCBI) home page. Available at: www. ncbi.nlm.nih.gov/OMIM.

    Google Scholar 

  58. Alzheimer Disease and Frontotemporal Dementia Mutation Database home page. Available at: www.molgen.ua.ac.be/ADMutations/.

    Google Scholar 

  59. Cacabelos, R., Fernández-Novoa, L., Corzo, L., Pichel, V., Lombardi, V., Kubota, Y. (2004) Genomics and phenotypic profiles in dementia: Implications for pharmacological treatment. Meth. Find. Exper. Clin. Pharmacol., 26, 421–444.

    CAS  Google Scholar 

  60. Cacabelos, R., Kubota, Y., Isaza, C., et al. (2005) Functional genomics and pharmacogenetics in Alzheimer's disease. In: Recent progress in Alzheimer's and Parkinson's disease, Hanin, I., Cacabelos, R., Fisher, A. (eds.), Taylor and Francis, London, pp. 89–102.

    Google Scholar 

  61. MITOMAP home page. Available at: www.mitomap.org/.

    Google Scholar 

  62. Wright, A.F., Jaconson, S.G., Cideciyan, A.V., et al. (2004) Lifespan and mitochondrial control of neurodegeneration. Nature Genet., 36, 1153–1158.

    CAS  PubMed  Google Scholar 

  63. Lin, M.T., Simon, D.K., Ahn, C.H., Kim, L.M., Beal, M.F. (2002) High aggregate burden of somatic mtDNA point mutations in aging and Alzheimer's disease brain. Hum. Mol. Genet., 11, 133–145.

    CAS  PubMed  Google Scholar 

  64. Jaenisch, R., Bird, A. (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet., 33(suppl.), 245–254.

    CAS  PubMed  Google Scholar 

  65. Hunter, D.J. (2005) Gene–environment interactions in human diseases. Nat. Rev. Genet., 6, 287–298.

    CAS  PubMed  Google Scholar 

  66. Teter, B., Finch, C.E. (2004) Caliban's heritance and the genetics of neuronal aging. Trends Neurosci., 27, 627–632.

    CAS  PubMed  Google Scholar 

  67. Levenson, J.M., Sweatt, J.D. (2005) Epigenetic mechanisms in memory formation. Nat. Rev. Neurosci., 6, 108–118.

    CAS  PubMed  Google Scholar 

  68. Riekse, R.G., Leverenz, J.B., McCormick, W., et al. (2004) Effect of vascular lesions on cognition in Alzheimer's disease: a community-based study. J. Am. Geriatr. Soc., 52, 1442–1448.

    PubMed  Google Scholar 

  69. Robertson, K.D. (2005) DNA methylation and human disease. Nat. Rev. Genet., 6, 597–610.

    CAS  PubMed  Google Scholar 

  70. Chance, M.R., Fiser, A., Sali, A., et al. (2004) High-throughput computational and experimental techniques in structural genomics. Genome Res., 14, 2145–2154.

    CAS  PubMed  Google Scholar 

  71. Butterfield, D.A., Boyd-Kimball, D. (2004) Proteomics analysis in Alzheimer's disease: new insights into mechanisms of neurodegeneration. Int. Rev. Neurobiol., 61, 159–188.

    PubMed  Google Scholar 

  72. Kanninen, K., Goldsteins, K., Goldsteins, G., Auriola, S., Alafuzoff, I., Koistinaho, J. (2004) Glycosylation changes in Alzheimer's disease as revealed by a proteomic approach. Neurosci. Lett., 367, 235–240.

    CAS  PubMed  Google Scholar 

  73. Puchades, M., Hansson, S.F., Nilsson, C.L., Andreassen, N., Blennow, K., Davidsson, P. (2003) Proteomic studies of potential cerebrospinal fluid protein markers for Alzheimer's disease. Brain Res. Mol. Brain Res., 118, 140–146.

    CAS  PubMed  Google Scholar 

  74. Marcotte, E.R., Srivastatva, L.K., Quirion, R. (2003) cDNA microarray and proteomic approaches in the study of brain diseases: focus on schizophrenia and Alzheimer's disease. Pharmacol. Ther., 100, 63–74.

    CAS  PubMed  Google Scholar 

  75. Kim, S.I., Voshol, H., Van Oostrum, J., Hastings, T.G., Cascio, M., Glucksman, M.J. (2004) Neuroproteomics: expression profiling of the brain's proteomes in health and disease. Neurochem. Res., 29, 1317–1331.

    CAS  PubMed  Google Scholar 

  76. Vercauteren, F.G., Clerens, S., Roy, L., et al. (2004) Early dysregulation of hippocampal proteins in transgenic rats with Alzheimer's disease-linked mutations in amyloid precursor protein and presenilin-1. Brain Res. Mol. Brain Res., 132, 241–259.

    CAS  PubMed  Google Scholar 

  77. Chiocco, M.J., Kulnane, L.S., Younkin, L., Younkin, S., Evin, G., Lamb, B.T. (2004) Altered amyloid-beta metabolism and deposition in genomic-based beta-secretase transgenic mice. J. Biol. Chem., 279, 52535–52542.

    CAS  PubMed  Google Scholar 

  78. Choi, J., Forster, M.J., McDonald, S.R., et al. (2004) Proteomic identification of specific oxidized proteins in APOE-knockout mice: relevance to Alzheimer's disease. Free Radic. Biol. Med., 36, 1155–1162.

    CAS  PubMed  Google Scholar 

  79. Duff, K., Suleman, F. (2004) Transgenic mouse models of Alzheimer's disease: how useful have they been for therapeutic development. Brief Funct. Genom. Proteom., 3, 47–59.

    CAS  Google Scholar 

  80. Prince, J.A., Feuk, L., Swayer, S.L., et al. (2001) Lack of replication of association findings in complex disease: an analysis of 15 polymorphisms in prior candidate genes for sporadic Alzheimer's disease. Eur. J. Genet., 9, 437–444.

    CAS  Google Scholar 

  81. Colhoun, H.M., McKeigue, P.M., Smith, G.D. (2003) Problems of reporting genetic associations with complex outcome. Lancet, 361, 865–872.

    PubMed  Google Scholar 

  82. Botstein, D., Risch, N. (2003) Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat. Genet., 33(suppl.), 228–237.

    CAS  PubMed  Google Scholar 

  83. Lohmueller, K.E., Pearce, C.L., Pike, M., Lander, M., Lander, E.S., Hirschhorn, J.N. (2003) Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat. Genet., 33, 177–182.

    CAS  PubMed  Google Scholar 

  84. Bonaldo, M.F., Bair, T.B., Scheetz, T.E., et al. (2004) 1274 Full-open reading frames of transcripts expressed in the developing mouse nervous system. Genome Res., 14, 2053–2063.

    CAS  PubMed  Google Scholar 

  85. Walker, P.R., Smith, B., Liu, Q.Y., et al. (2004) Data mining of gene expression changes in Alzheimer brain. Artif. Intell. Med., 31, 137–154.

    PubMed  Google Scholar 

  86. Luan, C.-H., Qiu, S., Finley, J.B., et al. (2004) High-throughput expression of C. elegans proteins. Genome Res., 14, 2102–2110.

    CAS  PubMed  Google Scholar 

  87. Sharp, A.J., Cheng, Z., Eichler, E.E. (2006) Structural variation of human genome. Annu. Rev. Genomics Hum. Genet., 7, 407–442.

    CAS  PubMed  Google Scholar 

  88. Crawford, D.C., Akey, D.T., Nickerson, D.A. (2005) The patterns of natural variation in human genes. Annu. Rev. Genomics Hum. Genet., 6, 287–312.

    CAS  PubMed  Google Scholar 

  89. Mamotte, C.D.S. (2006) Genotyping of single nucleotide substitutions. Clin. Biochem. Rev., 27, 63–75.

    PubMed  Google Scholar 

  90. Cacabelos, R., Fernández-Novoa, L., Lombardi, V., Takeda, M. (2003) Genetic variation and pharmacogenomics in Alzheimer disease. Psychiat. Neurol. Jpn., 105, 47–67.

    Google Scholar 

  91. Stankiewicz, P., Shaw, C.J., Whiters, M., Ionue, K., Lupski, J.R. (2004) Serial segmental duplications during primate evolution result in complex human genome architecture. Genome Res., 14, 2209–2220.

    CAS  PubMed  Google Scholar 

  92. Price, A.L., Eskin, E., Pevner, P.A. (2004) Whole-genome analysis of Alu repeat elements reveals complex evolutionary history. Genome Res., 14, 2245–2252.

    CAS  PubMed  Google Scholar 

  93. Tuzun, E., Sharp, A.J., Bailey, J.A., et al. (2005) Fine-scale structural variation of the human genome. Nat. Genet., 37, 727–732.

    CAS  PubMed  Google Scholar 

  94. Koonin, E.V., Makarova, K.S., Aravind, L. (2001) Horizontal gene transfer in prokaryotes: quantification and classification. Annu. Rev. Microbiol., 55, 709–742.

    CAS  PubMed  Google Scholar 

  95. Hinds, D.A., Stuve, L.L., Nilsen, G.B., et al. (2005) Whole-genome patterns of common DNA variation in three human populations. Science, 307, 1072–1079.

    CAS  PubMed  Google Scholar 

  96. Stumpf, M.P., Goldstein, D.B. (2003) Demography, recombination hotspot intensity, and the block structure of linkage disequilibrium. Curr. Biol., 13, 1–8.

    CAS  PubMed  Google Scholar 

  97. Ng, P.C., Henikoff, S. (2006) Predicting the effects of amino acid substitutions on protein function. Annu. Rev. Genomics Hum. Genet., 7, 61–80.

    CAS  PubMed  Google Scholar 

  98. Bitterman, K.J., Medvedik, O., Sinclair, D.A. (2003) Longevity regulation in Saccharomyces cerevisiae: Linking metabolism, genome stability, and heterochromatin. Microbiol. Mol. Biol. Rev., 67, 376–399.

    CAS  PubMed  Google Scholar 

  99. Gregersen, N., Bross, P., Vang, S., Christensen, J.H. (2006) Protein misfolding and human disease. Annu. Rev. Genomics Hum. Genet., 7, 103–124.

    CAS  PubMed  Google Scholar 

  100. Chang, H.Y., Yang, X. (2000) Proteases for cell suicide: functions and regulation of caspases. Microbiol. Mol. Biol. Rev., 64, 821–846.

    CAS  PubMed  Google Scholar 

  101. Cong, Y.S., Wright, W.E., Shay, J.W. (2002) Human telomerase and its regulation. Microbiol. Mol. Biol. Rev., 66, 407–425.

    CAS  PubMed  Google Scholar 

  102. Goedert, M., Spillantini, M.G. (2006) A century of Alzheimer's disease. Science, 314, 777–781.

    CAS  PubMed  Google Scholar 

  103. Citron, M. (2004) Strategies for disease modification in Alzheimer's disease. Nat. Rev. Neurosci., 5, 679–685.

    Google Scholar 

  104. Selkoe, D.J., Schenk, D. (2003) Alzheimer's disease: molecular understanding predicts amyloid-based therapeutics. Annu. Rev. Pharmacol. Toxicol., 43, 545–584.

    CAS  PubMed  Google Scholar 

  105. Golde, T.E. (2003) Alzheimer disease therapy: can the amyloid cascade be halted? J. Clin. Invest., 111, 11–18.

    CAS  PubMed  Google Scholar 

  106. Janus, C. (2003) Vaccines for Alzheimer's disease: how close are we? CNS Drugs, 17, 457–474.

    CAS  Google Scholar 

  107. Michaelis, M.L. (2003) Drugs targeting Alzheimer's disease: some thing old and some things new. J. Pharmacol. Exper. Ther., 304, 897–904.

    CAS  Google Scholar 

  108. Yoshikai, S., Sasaki, H., Doh-ura, K., Furuya, H., Sakaki, Y. (1990) Genomic organization of the human amyloid beta-protein precursor gene. Gene, 87, 257–263.

    CAS  PubMed  Google Scholar 

  109. Tanzi, R.E., Vaula, G., Romano, D.M., et al. (1992) Assessment of amyloid beta-protein precursor protein gene mutations in a large set of familial and sporadic Alzheimer disease cases. Am. J. Hum. Genet., 51, 273–282.

    CAS  PubMed  Google Scholar 

  110. Cao, X., Sudhof, T.C. (2001) A transcriptionally active complex of APP with Fe65 and histone acetyltransferase Tip60 [Erratum in: Science 2001; 293, 1437]. Science, 293, 115–120.

    CAS  PubMed  Google Scholar 

  111. Esler, W.P., Wolfe, M.S. (2001) A portrait of Alzheimer secretases–new features and familiar faces. Science, 293, 1449–1454.

    CAS  Google Scholar 

  112. Suzuki, N., Cheung, T.T., Cai, X.-D., et al. (1994) An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta-APP-717) mutants. Science, 264, 1336–1340.

    CAS  PubMed  Google Scholar 

  113. Goate, A., Chartier-Harlin, M.-C., Mullan, M., et al. (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature, 349, 704–706.

    CAS  PubMed  Google Scholar 

  114. Schellenberg, G.D., Anderson, L., O'Dahl, S., et al. (1991) APP(717), APP(693), and PRNP gene mutations are rare in Alzheimer disease. Am. J. Hum. Genet., 49, 511–517.

    CAS  Google Scholar 

  115. Murrell, J., Farlow, M., Ghetti, B., Benson, M.D. (1991) A mutation in the amyloid precursor protein associated with hereditary Alzheimer's disease. Science, 254, 97–99.

    CAS  PubMed  Google Scholar 

  116. Chartier-Harlin, M.-C., Crawford, F., Houlden, H., et al. (1991) Early-onset Alzheimer's disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature, 353, 844–846.

    CAS  PubMed  Google Scholar 

  117. Mullan, M., Crawford, F., Axelman, K., et al. (1992) A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N-terminus of beta-amyloid. Nat. Genet., 1, 345–347.

    CAS  PubMed  Google Scholar 

  118. Eckman, C.B., Metha, N.D., Crook, R., et al. (1997) A new pathogenic mutation in the APP gene (I716V) increases the relative proportion of A-beta-42(43). Hum. Mol. Genet., 6, 2087–2089.

    CAS  PubMed  Google Scholar 

  119. De Jonghe, C., Zehr, C., Yager, D., et al. (1998) Flemish and Dutch mutations in amyloid beta precursor protein have different effects on amyloid beta secretion. Neurobiol. Dis., 5, 281–286.

    PubMed  Google Scholar 

  120. Miravalle, L., Tokuda, T., Chiarle, R., et al. (2000) Substitutions at codon 22 of Alzheimer's A-beta peptide induce diverse conformational changes and apoptotic effects in human cerebral endothelial cells. J. Biol. Chem., 275, 27110–27116.

    CAS  PubMed  Google Scholar 

  121. Cordell, B. (1994) ?-Amyloid formation as a potential therapeutic target for Alzheimer's disease. Annu. Rev. Pharmacol. Toxicol., 34, 69–89.

    CAS  PubMed  Google Scholar 

  122. Vassar, R., Bennet, B.D., Babu-Khan, S., et al. (1999) ?-Secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science, 286, 735–741.

    CAS  PubMed  Google Scholar 

  123. Haniu, M., Denis, P., Young, Y., et al. (2000) Characterization of Alzheimer's beta-secretase protein BACE. A pepsin family member with unusual properties. J. Biol. Chem., 275, 21099–21106.

    CAS  PubMed  Google Scholar 

  124. De Jonghe, C., Esselens, C., Kumar-Singh, S., et al. (2001) Pathogenic APP mutations near the gamma-secretase cleavage site differentially affect A-beta secretion and APP C-terminal fragment stability. Hum. Mol. Genet., 10, 1665–1071.

    PubMed  Google Scholar 

  125. Troy, C.M., Rabacchi, S.A., Xu, Z., et al. (2001) Beta-amyloid-induced neuronal apoptosis requires c-Jun N-terminal kinase activation. J. Neurochem., 77, 157–164.

    CAS  PubMed  Google Scholar 

  126. Kajkowski, E.M., Lo, C.F., Ning, X., et al. (2001) Beta-amyloid peptide-induced apoptosis regulated by a novel protein containing a G protein activation module. J. Biol. Chem., 276, 18748–18756.

    CAS  PubMed  Google Scholar 

  127. Shimohama, S. (2000) Apoptosis in Alzheimer's disease–an update. Apoptosis, 5, 9–16.

    CAS  PubMed  Google Scholar 

  128. Raina, A.K., Hochman, A., Zhu, X., et al. (2001) Abortive apoptosis in Alzheimer disease. Acta Neuropathol., 101, 305–310.

    CAS  PubMed  Google Scholar 

  129. Lombardi, V.R.M., García, M., Rey, L., Cacabelos, R. (1999) Characterization of cytokine production, screening of lymphocyte subset patterns and in vitro apoptosis in healthy and Alzheimer's disease individuals. J. Neuroimmunol., 97, 163–171.

    CAS  PubMed  Google Scholar 

  130. Lombardi, V.R.M., Amado, L., Fernández-Novoa, L., Etcheverría, I., Seoane, S., Cacabelos, R. (2003) Flow cytometry analysis of CD28−/CD8+ suppresor cell precursor and CD45RO+/CD4+ memory T lymphocytes in the peripheral blood of Alzheimer's disease patients. In: New trends in Alzheimer- and Parkinson-related disorders, Hanin, I., Fisher, A., Cacabelos, R. (eds.), Monduzzi Editore, Bologna, pp. 57–61.

    Google Scholar 

  131. Gervais, F.G., Xu, D., Robertson, G.S., et al. (1999) Involvement of caspases in proteolytic cleavage of Alzheimer's amyloid-beta precursor protein and amyloidogenic A-beta peptide formation. Cell, 97, 395–406.

    CAS  PubMed  Google Scholar 

  132. Lombardi, V.R.M., Fernández-Novoa, L., Cacabelos, R. (2003) Neuroglia and neurotrophic factors (NTFs): potential targets for future therapeutics. Curr. Top. Pharmacol., 7, 229–246.

    CAS  Google Scholar 

  133. Gan, L., Ye, S., Chu, A., et al. (2004) Identification of cathepsin B as a mediator of neuronal death induced by A?-activated microglial cells using a functional genomics approach. J. Biol. Chem., 279, 5565–5572.

    CAS  PubMed  Google Scholar 

  134. Baek, S.H., Ohgi, K.A., Rose, D.W., Koo, E.H., Glass, C.K., Rosenfeld, M.G. (2002) Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-kappa-B and beta-amyloid precursor protein. Cell, 110, 55–67.

    CAS  PubMed  Google Scholar 

  135. van Leeuwen, F.W., Burbach, J.P., Hol, E.M. (1998) Mutations in RNA: a first example of molecular misreading in Alzheimer's disease. Trends Neurosci., 21, 331–335.

    PubMed  Google Scholar 

  136. Van Leeuwen, F.W., Fisher, D.F., Kamel, D., et al. (2000) Molecular misreading: a new type of transcript mutation expressed during aging. Neurobiol. Aging, 21, 879–891.

    PubMed  Google Scholar 

  137. Van Leeuwen, F.W. (2004) Neuropeptide research discloses part of the secrets of Alzheimer's disease neuropathogenesis: state of the art 2004. Neurosci. Lett., 361, 124–127.

    PubMed  Google Scholar 

  138. Van Leeuwen, F.W., de Kleijn, D.P.V., van de Hurk, H.H., et al. (1998) Frameshift mutants of beta-amyloid precursor protein and ubiquitin-B in Alzheimer's and Down patients. Science, 279, 242–247.

    PubMed  Google Scholar 

  139. Lorenzo, A., Yuan, M., Zhang, Z., et al. (2000) Amyloid beta interacts with the amyloid precursor protein: a potential toxic mechanism in Alzheimer's disease. Nat. Neurosci., 3, 460–464.

    CAS  PubMed  Google Scholar 

  140. Kang, D.E., Pietrzik, C.U., Baum, L., et al. (2000) Modulation of amyloid beta-protein clearance and Alzheimer's disease susceptibility by the LDL receptor-related protein pathway. J. Clin. Invest., 106, 1159–1166.

    CAS  PubMed  Google Scholar 

  141. Phiel, C.J., Wilson, C.A., Lee, V.M., Klein, P.S. (2003) GSK-3alpha regulates production of Alzheimer's disease amyloid-beta peptides. Nature, 423, 435–439.

    CAS  PubMed  Google Scholar 

  142. Taru, H., Kirino, Y., Suzuki, T., et al. (2002) Differential roles of JIP scaffold proteins in the modulation of amyloid precursor protein metabolism. J. Biol. Chem., 277, 27567–27574.

    CAS  PubMed  Google Scholar 

  143. Zhou, Y., Su, Y., Li, B., et al. (2003) Nonsteroidal anti-inflammatory drugs can lower amyloidogenic A-beta(42) by inhibiting Rho. Science, 300, 1215–1217.

    Google Scholar 

  144. Herzig, M.C., Winkler, D.T., Burgermeister, P., et al. (2004) Abeta is targeted to the vasculature in a mouse model of hereditary cerebral hemorrhage with amyloidosis. Nat. Neurosci., 7, 954–960.

    CAS  PubMed  Google Scholar 

  145. Alzheimer's Disease Collaborative Group. (1995) The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families. Nat. Genet., 11, 219–222.

    Google Scholar 

  146. O'Riordan, S., McMonagle, P., Janssen, J.C., et al. (2002) Presenilin-1 mutation (E280G), spastic paraparesis, and cranial MRI white-matter abnormalities. Neurology, 59, 1108–1110.

    Google Scholar 

  147. Moretti, P., Lieberman, A.P., Wilde, E.A., et al. (2004) Novel insertional presenilin 1 mutation causing Alzheimer disease with spastic paraparesis. Neurology, 62, 1865–1868.

    CAS  PubMed  Google Scholar 

  148. Kovacs, D.M., Fausett, H.J., Page, K.J., et al. (1996) Alzheimer's-associated presenilins 1 and 2: neuronal expression in brain and localization to intracellular membranes in mammalian cells. Nat. Med., 2, 224–229.

    CAS  PubMed  Google Scholar 

  149. Haass, C., De Strooper, B. (1999) The presenilins in Alzheimer's disease–proteolysis holds the key. Science, 286, 916–919.

    CAS  PubMed  Google Scholar 

  150. Gu, Y., Sanjo, N., Chen, F., et al. (2004) The presenilin proteins are components of multiple membrane-bound complexes that have different biological activities. J. Biol. Chem., 279, 31329–31336.

    CAS  PubMed  Google Scholar 

  151. Lamb, B.T. (1997) Presenilins, amyloid-beta and Alzheimer's disease. Nat. Med., 3, 28–29.

    CAS  PubMed  Google Scholar 

  152. Mattson, M.P., Guo, Q. (1999) The presenilins. Neuroscientist, 5, 112–124.

    CAS  Google Scholar 

  153. Scheper, W., Annaert, W., Cupers, P., Saftig, P., De Strooper, B. (1999) Function and dysfunction of the presenilins. Alzheimer Report, 2, 73–81.

    Google Scholar 

  154. Annaert, W., De Strooper, B. (1999) Presenilins: molecular switches between proteolysis and signal transduction. Trend Neurosci., 22, 439–443.

    CAS  PubMed  Google Scholar 

  155. Jo, D.G., Kim, M.J., Choi, Y.H., et al. (2001) Pro-apoptotic function of calsenilin/DREAM/ KChIP3. FASEB J., 15, 586–591.

    Google Scholar 

  156. Yamatsuji, T., Matsui, T., Okamoto, T., et al. (1996) G protein-mediated neuronal DNA fragmentation induced by familial Alzheimer's disease-associated mutants of APP. Science, 272, 1349–1352.

    CAS  PubMed  Google Scholar 

  157. Zhang, Z., Hartmann, H., Minh Do, V., et al. (1998) Destabilization of beta-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nature, 395, 698–702.

    CAS  PubMed  Google Scholar 

  158. Uemura, K., Kitagawa, N., Kohno, R., et al. (2003) Presenilin 1 is involved in maturation and trafficking of N-cadherin to the plasma membrane. J. Neurosci. Res., 74, 184–191.

    CAS  PubMed  Google Scholar 

  159. Kamal, A., Almenar-Queralt, A., LeBlanc, J.F., Roberts, E.A., Goldstein, L.S.B. (2001) Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. Nature, 414, 643–648.

    CAS  PubMed  Google Scholar 

  160. Jankowsky, J.L., Slunt, H.H., Gonzales, V., Jenkins, N.A., Copeland, N.G., Borchelt, D.R. (2004) APP processing and amyloid deposition in mice haplo-insufficient for presenilin 1. Neurobiol. Aging, 25, 885–892.

    CAS  PubMed  Google Scholar 

  161. Selkoe, D. (2004) Alzheimer's disease: mechanistic understanding predicts novel therapies. Ann. Intern. Med., 140, 627–638.

    CAS  PubMed  Google Scholar 

  162. Nyabi, O., Bentahir, M., Horre, K., et al. (2003) Presenilins mutated at Asp-257 or Asp-385 Pen-2 expression and Nicastrin glycosylation but remain catalytically inactive in the absence of wild type Presenilin. J. Biol. Chem., 278, 433430–433436.

    Google Scholar 

  163. Moliaka, Y.K., Grigorenko, A., Madera, D., Rogaev, E.I. (2004) Impas 1 possesses endoproteolytic activity against multipass membrane protein substrate cleaving the presenilin 1 holoprotein. FEBS Lett., 557, 185–192.

    CAS  PubMed  Google Scholar 

  164. Massey, L.K., Mah, A.L., Ford, D.L. (2004) et al. Overexpression of ubiquilin decrease ubiquitination and degeneration of presenilin proteins. J. Alzheimer Dis., 6, 79–92.

    CAS  Google Scholar 

  165. Yasuda, Y., Kudo, T., Katayama, T., et al. (2002) fAD-linked presenilin-1 mutants impede translation regulation under ER stress. Biochem. Biophys. Res. Commun., 296, 313–318.

    CAS  PubMed  Google Scholar 

  166. Lamb, B.T., Bardel, K.A., Kulnane, L.S., et al. (1999) Amyloid production and deposition in mutant amyloid precursor protein and presenilin-1 yeast artificial chromosome transgenic mice. Nat. Neurosci., 2, 695–697.

    CAS  PubMed  Google Scholar 

  167. Duff, K., Eckman, C., Zehr, C., et al. (1996) Increased amyloid-beta-42(43) in brains of mice expressing mutant presenilin 1. Nature, 383, 710–713.

    CAS  PubMed  Google Scholar 

  168. Citron, M., Westaway, D., Xia, W., et al. (1997) Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nat. Med., 3, 67–72.

    CAS  PubMed  Google Scholar 

  169. Jankowski, J.L., Fadale, D.J., Anderson, J., et al. (2004) Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vitro: evidence for augmentation of a 42-specific gamma secretase. Hum. Mol. Genet., 13, 159–170.

    Google Scholar 

  170. Chui, D.-H., Tanahashi, H., Ozawa, K., et al. (1999) Transgenic mice with Alzheimer presenilin 1 mutations show accelerated neurodegeneration without amyloid plaque formation. Nat. Med., 5, 560–564.

    CAS  PubMed  Google Scholar 

  171. Marambaud, P., Alves da Costa, C., Ancolio, K., Checler, F. (1998) Alzheimer's disease-linked mutation of presenilin-2 (N141I-PS2) drastically lowers APP? secretion: control by the proteasome. Biochem. Biophys. Res. Commun., 252, 134–138.

    CAS  PubMed  Google Scholar 

  172. Wolfe, M.S., Xia, W., Ostaszewski, B.L., Diehl, T.S., Kimberly, W.T., Selkoe, D.J. (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature, 398, 513–517.

    CAS  PubMed  Google Scholar 

  173. Russo, C., Schettini, G., Saido, T.C., et al. (2000) Presenilin-1 mutation in Alzheimer's disease. Nature, 405, 531–532.

    CAS  PubMed  Google Scholar 

  174. Chenn, A., Walsh, C.A. (1999) Cranking it up a Notch. Science, 286, 689–690.

    CAS  PubMed  Google Scholar 

  175. Godin, C., Auclair, A., Ferland, M., Hebert, S.S., Carreau, M., Levesque, G. (2003) Presenilin-1 is indirectly implicated in Notch1 cleavage. Neuroreport, 14, 1613–1616.

    CAS  PubMed  Google Scholar 

  176. Gupta-Rossi, N., Six, E., LeBail, O., et al. (2004) Monoubiquitination and endocytosis direct gamma-secretase cleavage of activated Notch receptor. J. Cell Biol., 166, 73–83.

    CAS  PubMed  Google Scholar 

  177. Mumm, J.S., Kopan, R. (2000) Notch signaling: from the outside in. Dev. Biol., 228, 151–165.

    CAS  PubMed  Google Scholar 

  178. Selkoe, D., Kopan, R. (2003) Notch and presenilin: regulated intramembrane proteolysis links development and degeneration. Annu. Rev. Neurosci., 26, 565–597.

    CAS  PubMed  Google Scholar 

  179. De Strooper, B., Saftig, P., Craessaerts, K., Vanderstichele, H., et al. (1998) Deficiency of prese-nilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature, 391, 387–390.

    PubMed  Google Scholar 

  180. Okochi, M., Steiner, H., Fukimori, A., et al. (2002) Presenilins mediate a dual intramembranous gamma-secretase cleavage of Notch-1. EMBO J., 21, 5408–5416.

    CAS  PubMed  Google Scholar 

  181. Citron, M. (2004) Beta-secretase inhibition for the treatment of Alzheimer's disease–prom-ise and challenge. Trends Pharmacol. Sci., 25, 92–97.

    CAS  PubMed  Google Scholar 

  182. Vassar, R. (2004) BACE1: the beta-secretase enzyme in Alzheimer's disease. J. Mol. Neurosci., 23, 105–114.

    CAS  PubMed  Google Scholar 

  183. Lee, S.F., Shah, S., Li, H., Yu, C., Han, W., Yu, G. (2002) Mammalian APH-1 interacts with presenilin and nicastrin and is required for intramembrane proteolysis of amyloid-beta precursor protein and Notch. J. Biol. Chem., 277, 45013–45019.

    CAS  PubMed  Google Scholar 

  184. Francis, R., McGrath, G., Zhang, G., et al. (2002) Aph-1 and pen-2 are required for Notch pathway signalling, gamma-secretase cleavage of beta-APP, and presenilin protein accumulation. Dev. Cell, 3, 85–97.

    CAS  PubMed  Google Scholar 

  185. Steiner, H., Winkler, E., Edbauer, D., et al. (2002) PEN-2 is an integral component of the gamma-secretase complex required for coordinated expression of presenilin and nicastrin. J. Biol. Chem., 277, 39062–39065.

    CAS  PubMed  Google Scholar 

  186. Li, Y.M., Xu, M., Lai, M.T., et al. (2000) Photoactivated gamma-secretase inhibitors directed to the active site covalently label presenilin 1. Nature, 405, 689–694.

    CAS  PubMed  Google Scholar 

  187. Sestan, N., Artavanis-Tsakonas, S., Rakic, P. (1999) Contact-dependent inhibition of cortical neurite growth mediated by Notch signaling. Science, 286, 741–746.

    CAS  PubMed  Google Scholar 

  188. Ye, Y., Lukinova, N., Fortini, M.E. (199) Neurogenic phenotypes and altered Notch processing in Drosophila presenilin mutants. Nature, 398, 525–529.

    Google Scholar 

  189. Struhl, G., Greenwald, I. (1999) Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature, 398, 522–525.

    CAS  PubMed  Google Scholar 

  190. Larkin, M. (1999) Risks seen in potential drugs for Alzheimer's disease. Lancet, 353, 1245.

    Google Scholar 

  191. Hardy, J., Israël, A. (1999) In search of γ-secretase. Nature, 398, 466–467.

    CAS  PubMed  Google Scholar 

  192. Das, I., Craig, C., Funahashi, Y., et al. (2004) Notch oncoproteins depend on gamma-secre-tase/presenilin activity for processing and function. J. Biol. Chem., 279, 30771–30780.

    CAS  PubMed  Google Scholar 

  193. Fraering, P.C., Ye, W., Strub, J.M., et al. (2004) Purification and characterization of the human gamma-secretase complex. Biochemistry, 43, 9774–9789.

    CAS  Google Scholar 

  194. Beher, D., Fricker, M., Nadin, A., et al. (2003) In vitro characterization of the presenilindependent gamma-secretase complex using a novel affinity ligand. Biochemistry, 42, 8133–8142.

    CAS  PubMed  Google Scholar 

  195. Knappenberger, K.S., Tian, G., Ye, X., et al. (2004) Mechanism of gamma-secretase cleavage activation: is gamma-secretase regulated through autoinhibition involving the presenilin1 exon 9 loop? Biochemistry, 43, 6208–6218.

    CAS  PubMed  Google Scholar 

  196. Pitsi, D., Octave, J.N. (2004) Presenilin 1 stabilizes the C-terminal fragment of the amyloid precursor protein independently of gamma-secretase activity. J. Biol. Chem., 279, 25333–24338.

    CAS  PubMed  Google Scholar 

  197. Fluhrer, R., Friedlein, A., Haass, C., Walter, J. (2004) Phosphorylation of presenilin 1 at the caspase recognition site regulates its proteolytic processing and the progression of apoptosis. J. Biol. Chem., 279, 1585–1593.

    CAS  PubMed  Google Scholar 

  198. Gamliel, A., Teicher, C., Hartmann, T., Beyreuther, K., Stein, R. (2003) Overexpression of wild-type presenilin 2 or its familial Alzheimer's disease-associated mutant does not induce or increase susceptibility to apoptosis in different cell lines. Neuroscience, 117, 19–28.

    CAS  PubMed  Google Scholar 

  199. Alves da Costa, C., Mattson, M.P., Ancolio, K., Checler, F. (2003) The C-terminal fragment of presenilin 2 triggers p53-mediated staurosporine-induced apoptosis, a function independent of the presenilinase-derived N-terminal counterpart. J. Biol. Chem., 278, 12064–12069.

    Google Scholar 

  200. Mori, M., Nakagami, H., Morishita, R., et al. (2002) N14I mutant presenilin-2 gene enhances cell death and decreases bcl-2 expression. Life Sci., 70, 2567–2580.

    CAS  PubMed  Google Scholar 

  201. Riazanskaia, N., Lukiw, W.J., Grigorenko, A., et al. (2002) Regulatory region variability in the human presenilin-2 (PSEN2) gene: potential contribution to the gene activity and risk for AD. Mol. Psychiatry, 7, 891–898.

    CAS  PubMed  Google Scholar 

  202. Di Natale, M., Perri, M., Kawarai, T., et al. (2003) Absence of association between Alzheimer disease and the regulatory region polymorphism on the PS2 gene in an Italian population. Neurosci. Lett., 343, 210–212.

    PubMed  Google Scholar 

  203. Goode, B.L., Chau, M., Denis, P.E., Feinstein, S.C. (2000) Structural and functional differences between three-repeat and four-repeat tau isoforms: implications for normal tau function and the onset of neurodegenerative disease. J. Biol. Chem., 275, 38182–38189.

    CAS  PubMed  Google Scholar 

  204. Stamer, K., Vogel, R., Thies, E., Madelkow, E., Mandelkow, E.M. (2002) Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J. Cell Biol., 156, 1051–1063.

    CAS  PubMed  Google Scholar 

  205. Giasson, B.I., Forman, M.S., Higuchi, M., et al. (2003) Initiation and synergistic fibrillization of tau and alpha-synuclein. Science, 300, 636–640.

    CAS  PubMed  Google Scholar 

  206. Rizzu, P., Hinkle, D.A., Zhukareva, V., et al. (2004) DJ-1 colocalizes with tau inclusions: a link between parkinsonism and dementia. Ann. Neurol., 55, 113–118.

    CAS  PubMed  Google Scholar 

  207. Hardy, J., Gwinn-Hardy, K. (1998) Genetic classification of primary degenerative disease. Science, 282, 1075–1079.

    CAS  PubMed  Google Scholar 

  208. Hutton, M. (2000) Molecular genetics of chromsome 17 tauopathies. Ann. N.Y. Acad. Sci., 920, 63–73.

    CAS  PubMed  Google Scholar 

  209. Forman, M.S., Lee, V.M., Trojanowski, J.Q. (2000) New insights into genetic and molecular mechanisms of brain degeneration in tauopathies. J. Chem. Neuroanat., 20, 225–244.

    CAS  PubMed  Google Scholar 

  210. Spillantini, M.G., Goedert, M. (1998) Tau protein pathology in neurodegenerative diseases. Trends Neurosci., 21, 428–433.

    CAS  PubMed  Google Scholar 

  211. Goedert, M., Crowther, R.A., Spillantini, M.G. (1998) Tau mutations cause frontotemporal dementias. Neuron, 21, 955–958.

    CAS  PubMed  Google Scholar 

  212. Smet, C., Sambo, A.V., Wieruszeski, J.M., et al. (2004) The peptidyl prolyl cis/trans-isomer-ase Pin1 recognizes the phospho-Thr212-Pro213 site on Tau. Biochemistry, 43, 2032–2040.

    CAS  PubMed  Google Scholar 

  213. Lu, P.J., Wulf, G., Zhou, X.Z., Davies, P., Lu, K.P. (1999) The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature, 399, 784–788.

    CAS  PubMed  Google Scholar 

  214. Tan, J., Town, T., Paris, D., et al. (1999) Microglial activation resulting from CD40-CD40L interaction after beta-amyloid stimulation. Science, 286, 2352–2355.

    CAS  PubMed  Google Scholar 

  215. Alonso, A.D.C., Grundke-Iqbal, I., Iqbal, K. (1996) Alzheimer's disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubles. Nat. Med., 2, 783–787.

    CAS  PubMed  Google Scholar 

  216. Rapoport, S.I. (2003) Coupled reductions in brain oxidative phosphorylation and synaptic function can be quantified and staged in the course of Alzheimer disease. Neurotox. Res., 5, 385–398.

    PubMed  Google Scholar 

  217. Delacourte, A., Sergeant, N., Champain, D., et al. (2002) Nonoverlapping but synergetic tau and APP pathologies in sporadic Alzheimer's disease. Neurology, 59, 398–407.

    CAS  PubMed  Google Scholar 

  218. Conrad, C., Andreadis, A., Trojanowski, J.Q., et al. (1997) Genetic evidence for the involvement of tau in progressive supranuclear palsy. Ann. Neurol., 41, 277–281.

    CAS  PubMed  Google Scholar 

  219. Baker, M., Litvan, I., Houlden, H., et al. (1999) Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Hum. Mol. Genet., 8, 711–715.

    CAS  PubMed  Google Scholar 

  220. Verpillat, P., Camuzat, A., Hannequin, D., et al. (2002) Association between the extended tau haplotype and frontotemporal dementia. Arch. Neurol., 59, 935–839.

    PubMed  Google Scholar 

  221. Hughes, A., Mann, D., Pickering-Brown, S. (2003) Tau haplotype frequency in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Exp. Neurol., 181, 12–16.

    CAS  PubMed  Google Scholar 

  222. Sobrido, M.J., Miller, B.L., Havlioglu, N., et al. (2003) Novel tau polymorphisms, tau haplotypes, and splicing in familial and sporadic frontotemporal dementia. Arch. Neurol., 60, 698–702.

    PubMed  Google Scholar 

  223. Kwok, J.B., Teber, E.T., Loy, C., Hallup, M., et al. (2004) Tau haplotypes regulate transcription and are associated with Parkinson's disease. Ann. Neurol., 55, 329–334.

    CAS  PubMed  Google Scholar 

  224. Sjogren, M., Englund, E. (2004) Negative neurofilament light and tau immunostaining in frontotemporal dementia. Dement. Geriatr. Cogn. Disord., 17, 346–349.

    PubMed  Google Scholar 

  225. Van Swieten, J.C., Rosso, S.M., van Herpen, E., Kamphorst, W., Ravid, R., Heutink, P. (2004) Phenotypic variation in frontotemporal dementia and parkinsonism linked to chromosome 17. Dement. Geriatr. Cogn. Disord., 17, 261–264.

    PubMed  Google Scholar 

  226. Pickering-Brown, S. (2004) The tau gene locus and frontotemporal dementia. Dement. Geriatr. Cogn. Disord., 17, 258–260.

    CAS  PubMed  Google Scholar 

  227. Rademarkers, R., Cruts, M., Dermaut, B., et al. (2002) Tau negative frontal lobe dementia at 17q21: significant finemapping of the candidate region to a 4.8 cM interval. Mol. Psychiatry, 7, 1064–1074.

    Google Scholar 

  228. Yancopoulou, D., Crowther, R.A., Charkrabarti, L., Gydesen, S., Brown, J.M., Spillantini, M.G. (2003) Tau protein in frontotemporal dementia linked to chromosome 3 (FTD-3). J. Neuropathol. Exp. Neurol., 62, 878–882.

    CAS  PubMed  Google Scholar 

  229. Vitali, A., Piccini, A., Borghi, R., et al. (2004) Soluble amyloid beta-protein in increased in frontotemporal dementia with tau gene mutations. J. Alzheimer Dis., 6, 45–51.

    CAS  Google Scholar 

  230. Tanahashi, H., Asada, T., Tabira, T. (2004) Association between tau polymorphism and male early-onset Alzheimer's disease. Neuroreport, 15, 175–179.

    CAS  PubMed  Google Scholar 

  231. Ganzer, S., Artl, S., Schoder, V., et al. (2003) CSF-tau, CSF-Abeta1-42, APOE-genotype and clinical parameters in the diagnosis of Alzheimer's disease: combination of CSF-tau and MMSE yields highest sensitivity and specificity. J. Neural Transm., 110, 1149–1160.

    CAS  PubMed  Google Scholar 

  232. Gamblin, T.C., Chen, F., Zambrano, A., et al. (2003) Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer's disease. Proc. Natl. Acad. Sci. U. S. A., 100, 10032–10037.

    CAS  PubMed  Google Scholar 

  233. Ingram, E.M., Spillantini, M.G. (2002) Tau gene mutations: dissecting the pathogenesis of FTDP-17. Trends Mol. Med., 8, 555–562.

    CAS  PubMed  Google Scholar 

  234. Yoshida, H., Hastie, C.J., McLauchland, H., Cohen, P., Goedert, M. (2004) Phosphorylation of microtubule-association protein tau by isoforms of c-Jun N-terminal kinase (JNK). J. Neurochem., 90, 352–358.

    CAS  PubMed  Google Scholar 

  235. Kyong Pyo, H., Lovati, E., Pasinetti, G.M., Ksiezak-Reding, H. (2004) Phosphorylation of tau at THR212 and SER214 in human neuronal and glial cultures: the role of AKT. Neuroscience, 127, 649–658.

    Google Scholar 

  236. Liu, F., Iqbal, K., Grundke-Iqbal, I., Hart, G.W., Gong, C.X. (2004) O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer's disease. Proc. Nat. Acad. Sci. U. S. A., 101, 10804–10809.

    CAS  Google Scholar 

  237. Lee, G., Thangevel, R., Sharma, V.M., et al. (2004) Phosphorylation of tau by fyn: implications for Alzheimer's disease. J. Neurosci., 24, 2304–2312.

    CAS  PubMed  Google Scholar 

  238. Li, G., Yin, H., Kuret, J. (2004) Casein kinesin 1 delta phosphorylates tau and its binding to microtubules. J. Biol. Chem., 279, 15938–15945.

    CAS  PubMed  Google Scholar 

  239. Noble, W., Olm, V., Takata, K., et al. (2003) Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron, 38, 555–565.

    CAS  PubMed  Google Scholar 

  240. Horiguchi, T., Uryu, K., Giasson, B.I., et al. (2003) Nitration of tau protein is linked to neurodegeneration in tauopathies. Am. J. Pathol., 163, 1021–1031.

    CAS  PubMed  Google Scholar 

  241. Shimura, H., Schwartz, D., Gygi, S., Kosik, K.S. (2004) CHIP-Hsc70 complex ubiquitinates phosphorylated tau and enhances cell survival. J. Biol. Chem., 279, 4869–4876.

    CAS  PubMed  Google Scholar 

  242. Shimura, H., Miura-Shimura, Y., Kosik, K.S. (2005) Binding of tau to heat shock protein 27 leads to decreased concentration of hyperphosphorylated tau and enhanced cell survival. J. Biol. Chem., 279, 17957–17962.

    Google Scholar 

  243. Keck, S., Nitsch, R., Grune, T., Ullrich, O. (2003) Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer's disease. J. Neurochem., 85, 115–122.

    CAS  PubMed  Google Scholar 

  244. Barghorn, S., Davies, P., Mandelkow, E. (2004) Tau paired helical filaments from Alzheimer's disease brain and assembled in vitro are based on beta-structure in the core domain. Biochemistry, 43, 1694–1703.

    CAS  PubMed  Google Scholar 

  245. Berriman, J., Serpell, L.C., Oberg, K.A., Fink, A.L., Goedert, M., Crowther, R.A. (2003) Tau filaments from human brain and from in vitro assembly of recombinant protein show cross-beta structure. Proc. Natl. Acad. Sci. U. S. A., 100, 9034–9038.

    CAS  PubMed  Google Scholar 

  246. Yoshiyama, Y., Zhang, B., Bruce, J., Trojanowski, J.Q., Lee, V.M. (2003) Reduction of detryrosinated microtubules and Golgi fragmentation are linked to tau-induced degeneration in astrocytes. J. Neurosci., 23, 10662–10671.

    CAS  PubMed  Google Scholar 

  247. Hua, Q., He, R.Q. (2003) Tau could protect DNA double helix structure. Biochim. Biophys. Acta, 1645, 205–211.

    CAS  PubMed  Google Scholar 

  248. Luo, M.H., Tse, S.W., Memmott, J., Andreadis, A. (2004) Novel isoforms of tau that lack the microtubule-binding domain. J. Neurochem., 90, 340–351.

    CAS  PubMed  Google Scholar 

  249. Sze, C.I., Su, M., Pugazhenthi, S., et al. (2004) Down-regulation of WW domain-containing oxidoreductase induces tau phosphorylation in vitro. A potential role in Alzheimer's disease. J. Biol. Chem., 279, 30498–30506.

    CAS  PubMed  Google Scholar 

  250. Yu, Q., Guo, J., Zhou, J. (2004) A minimal length between tau exon 10 and 11 is required for correct splicing of exon 10. J. Neurochem., 90, 164–172.

    CAS  PubMed  Google Scholar 

  251. Zhang, B., Higuchi, M., Yoshiyama, Y., et al. (2004) Retarded axonal transport of R406W mutant tau in transgenic mice with a neurodegenerative tauopathy. J. Neurosci., 24, 4657–4667.

    CAS  PubMed  Google Scholar 

  252. Carrell, R.W., Lomas, D.A. (1997) Conformational diseases. Lancet, 350, 134–138.

    CAS  PubMed  Google Scholar 

  253. Lomas, D.A., Carrell, R.W. (2002) Serpinopathies and the conformational dementias. Nat. Rev. Genet., 3, 759–768.

    CAS  PubMed  Google Scholar 

  254. Caughely, B., Landsbury, P.T. (2003) Protofibrils, pores, fibrils, and neurodegeneration: Separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci., 26, 267–298.

    Google Scholar 

  255. Bossy-Wetzel, E., Barsoum, M., Godzik, A., Schwarzenbacher, R., Lipton, S. (2003) Mitochondrial fission in apoptosis, neurodegeneration and aging. Curr. Opin. Cell Biol., 15, 706–716.

    CAS  PubMed  Google Scholar 

  256. Petrucelli, L., Dawson, T.M. (2004) Mechanism of neurodegenerative disease: role of the ubiquitin proteasome system. Ann. Med., 36, 315–320.

    CAS  PubMed  Google Scholar 

  257. Bonifacino, J.S., Weissman, A.M. (1998) Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu. Rev. Cell Dev. Biol., 14, 19–57.

    CAS  PubMed  Google Scholar 

  258. Thrower, J.S., Hoffman, L., Rechsteiner, M., Pickart, C.M. (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J., 19, 94–102.

    CAS  PubMed  Google Scholar 

  259. Canu, N., Calissano, P. (2003) In vitro cultured neurons for molecular studies correlating apoptosis with events related to Alzheimer disease. Cerebellum, 2, 270–278.

    CAS  PubMed  Google Scholar 

  260. Bertram, L., Hiltunen, M., Parkinson, M., et al. (2005) Family-based association between Alzheimer's disease and variants of UBQLN1. N. Engl. J. Med., 352, 884–894.

    CAS  PubMed  Google Scholar 

  261. Kamboh, M.I., Minster, R.L., Feingold, E., DeKosky, S.T. (2006) Genetic association of ubiquilin with Alzheimer's disease and related quantitative measures. Mol. Psychiatry, 11, 273–279.

    CAS  Google Scholar 

  262. Massey, L.K., Mah, A.L., Monteiro, M.J. (2005) Ubiquilin regulates presenilin endoproteolysis and modulates gamma-secretase components, Pen-2 and nicastrin. Biochem. J., 391, 513–525.

    CAS  PubMed  Google Scholar 

  263. Layfield, R., Alban, A., Mayer, R.J., Lowe, J. (2001) The ubiquitin protein catabolic disorders. Neuropathol. Appl. Neurobiol., 27, 171–179.

    CAS  PubMed  Google Scholar 

  264. Fischer, D.F., De Vos, R.A., Van Dijk, R., et al. (2003) Disease-specific accumulation of mutant ubiquitin as a marker for proteasomal dysfunction in the brain. FASEB J., 17, 2014–2024.

    CAS  PubMed  Google Scholar 

  265. Lam, Y.A., Pickart, C.M., Alban, A., et al. (2000) Inhibition of the ubiquitin-proteasome system in Alzheimer's disease. Proc. Natl. Acad. Sci. U. S. A., 97, 9902–9906.

    CAS  PubMed  Google Scholar 

  266. Amerik, A.Y., Swaminathan, S., Krantz, B.A.,Wilkinson, K.D., Hochstrasser, M. (1997) In vivo disassembly of free polyubiquitin chains by yeast Ubp14 modulates rates of protein degradation by the proteasome. EMBO J., 16, 4826–4838.

    CAS  PubMed  Google Scholar 

  267. Johnston, J.A., Ward, C.L., Kopito, R.R. (1998) Aggresomes: a cellular response to mis-folded proteins. J. Cell. Biol., 143, 1883–1898.

    CAS  PubMed  Google Scholar 

  268. Lindsten, K., Menendez-Benito, V., Masucci, M.G., Dantuma, N.P. (2003) A transgenic mouse model of the ubiquitin/proteasome system. Nature Biotechnol., 21, 897–902.

    CAS  Google Scholar 

  269. Hope, A.D., de Silva, R., Fischer, D.F., Hol, E.M., van Leeuwen, F.W., Lees, A.J. (2003) Alzheimer's associated variant ubiquitin causes inhibition of the 26S proteasome and chaperone expression. J. Neurochem., 86, 394–404.

    CAS  PubMed  Google Scholar 

  270. De Vrij, F.M., Sluijs, J.A., Gregori, L., et al. (2001) Mutant ubiquitin expressed in Alzheimer's disease causes neuronal death. FASEB J., 15, 2680–2688.

    PubMed  Google Scholar 

  271. Lang-Rollin, I., Rideout, H., Stefanis, L. (2003) Ubiquitinated inclusions and neuronal cell death. Histol. Histopathol., 18, 509–517.

    CAS  PubMed  Google Scholar 

  272. Fernandez-Vizarra, P., Fernandez, A.P., Castro Blanco, A. et al. (2004) Intra- and extracellular Abeta and PHF in clinically evaluated cases of Alzheimer's disease. Histol. Histopathol., 19, 823–844.

    CAS  PubMed  Google Scholar 

  273. Konishi, Y., Beach, T., Sue, L.I., et al. (2003) The temporal localization of frame-shift ubiq-uitin-B and amyloid precursor protein, and complement proteins in the brain of non-demented control patients with increasing Alzheimer's disease pathology. Neurosci. Lett., 348, 46–50.

    CAS  Google Scholar 

  274. Metsaars, W.P., Hauw, J.J., van Welsem, M.E., Duyckaerts, C. (2003) A grading system of Alzheimer disease lesions in neocortical areas. Neurobiol. Aging, 24, 563–572.

    PubMed  Google Scholar 

  275. Forloni, G., Terreni, L., Bertani, I., et al. (2002) Protein misfolding in Alzheimer's and Parkinson's disease: genetics and molecular mechanisms. Neurobiol. Aging, 23, 957–976.

    CAS  PubMed  Google Scholar 

  276. Master, E., Chan, S.L., Ali-Khan, Z. (1997) Ubiquitin (Ub) interacts non-covalently with Alzheimer amyloid precursor protein (betaPP): isolation of Ub-betaPP conjugates from brain extracts. Neuroreport, 8, 2781–2786.

    CAS  PubMed  Google Scholar 

  277. Ali-Khan, Z., Chan, S.L., Jung, S.S., Chronopoloulos, S. (1996) Ubiquitin and Alzheimer's amyloid beta precursor protein colocalize to endosomes-lysosomes in cultured human cells. Neuroreport, 8, 385–389.

    CAS  PubMed  Google Scholar 

  278. Chen, Y., Liu, W., McPhie, D.L., Hassinger, L., Neve, R.L. (2003) APP-BP1 mediates APP-induced apoptosis and DNA synthesis and is increased in Alzheimer's disease brain. J. Cell. Biol., 163, 27–33.

    CAS  PubMed  Google Scholar 

  279. Chen, Y., McPhie, D.L., Hirschberg, J., Neve, R.L. (2000) The amyloid precursor protein-blinding protein APP-BP1 drives the cell cycle through the S-M checkpoint and apoptosis in neurons. J. Biol. Chem., 275, 8929–8935.

    CAS  PubMed  Google Scholar 

  280. Dil Kuazi, A., Kito, K., Abe, Y., Shin, R.W., Kamitani, K., Ueda, N. (2003) NEDD8 protein is involved in ubiquitinated inclusion bodies. J. Pathol., 199, 259–266.

    Google Scholar 

  281. Song, S., Kim, S.Y., Hong, Y.M., et al. (2003) Essential role of E2-25K/Hip-2 in mediating amyloid-beta neurotoxicity. Mol. Cell, 12, 553–563.

    CAS  PubMed  Google Scholar 

  282. Ogawa, O., Lee, H.G., Zhu, X., et al. (2003) Increased p27, an essential component of cell cycle control, in Alzheimer's disease. Aging Cell, 2, 105–110.

    CAS  PubMed  Google Scholar 

  283. An, W.L., Cowburn, R.F., Li, L., et al. (2003) Up-regulation of phosphorylated/activated p70 S6 kinase and its relationship to neurofibrillary pathology in Alzheimer's disease. Am. J. Pathol., 163, 591–607.

    CAS  PubMed  Google Scholar 

  284. Sterner, D.E., Berger, S.L. (2000) Acetylation of histones and transcription-related factors. Microbiol. Mol. Biol. Rev., 62, 435–459.

    Google Scholar 

  285. Maston, G.A., Evans, S.K., Green, M.R. (2006) Transcriptional regulatory elements in the human genome. Annu. Rev. Genomics Hum. Genet., 7, 29–59.

    CAS  PubMed  Google Scholar 

  286. Graves, P.R., Haystead, A.J. (2002) Molecular biologist's guide to proteomics. Microbiol. Mol. Biol. Rev., 66, 39–63.

    CAS  PubMed  Google Scholar 

  287. Vemuri, G.N., Aristidou, A.A. (2005) Metabolic engineering in the -omics era: elucidating and modulating regulatory networks. Microbiol. Mol. Biol. Rev., 69, 197–216.

    CAS  PubMed  Google Scholar 

  288. Lamb, J., Crawford, E.D., Peck, D., et al. (2006) The Connectivity Map: using gene-expres-sion signatures to connect small molecules, gene, and disease. Science, 313, 1929–1935.

    CAS  PubMed  Google Scholar 

  289. Cacabelos, R., Lombardi, V., Fernández-Novoa, L., et al. (2004) A functional genomics approach to the analysis of biological markers in Alzheimer disease. In: Molecular neurobiology of Alzheimer disease and related disorders, Takeda, M., Tanaka, T., Cacabelos, R. (eds.), Karger, Basel, pp. 236–285.

    Google Scholar 

  290. Cacabelos, R. (2004) Genomic characterization of Alzheimer's disease and genotype-related phenotypic analysis of biological markers in dementia. Pharmacogenomics, 5, 1049–1105.

    CAS  Google Scholar 

  291. Cacabelos, R., Fernández-Novoa, L., Pichel, V., Lombardi, V., Kubota, Y., Takeda, M. (2004) Pharmacogenomic studies with a combination therapy in Alzheimer's disease. In: Molecular neurobiology of Alzheimer disease and related disorders, Takeda, M., Tanaka, T., Cacabelos, R. (eds.), Karger, Basel, pp. 94–107.

    Google Scholar 

  292. Van Oijen, M., Hofman, A., Soares, H.D., Koudstaal, P.J., Breteler, M.M. (2006) Plasma Aβ1–40 and Aβ1–42 and the risk of dementia: a prospective case-cohort study. Lancet Neurol., 5, 655–660.

    PubMed  Google Scholar 

  293. Fullwood, N., Hayashi, Y., Allsop, D. (2006) Plasma amyloid-β concentrations in Alzheimer's disease: an alternative hypothesis. Lancet Neurol., 5, 1000–1001.

    PubMed  Google Scholar 

  294. Cacabelos, R. (2002) The histamine–cytokine network in Alzheimer disease: etiopathogenic and pharmacogenomic implications. In: Mapping progress of Alzheimer's and Parkinson's diseases, Advances in behavioral biology, Vol. 51, Mizuno, Y., Fisher, A., Hanin, I. (eds.), Pergamon Press, New York, pp. 59–64.

    Google Scholar 

  295. Fernández-Novoa, L., Cacabelos, R. (2001) Histamine function in brain disorders. Behav. Brain Res., 124, 213–233.

    PubMed  Google Scholar 

  296. Cacabelos, R., Corzo, L., Fernández-Novoa, L., Lombardi, V. (2004) Histamine in Alzheimer's disease pathogenesis: biochemistry and functional genomics. Meth. Find. Exper. Clin. Pharmacol., 26(suppl. 2), 9–16.

    Google Scholar 

  297. Lombardi, V.R.M., Fernández-Novoa, L., Etcheverría, I., Seoane, S., Cacabelos, R. (2004) Association between APOE ε4 allele and increased expression of CD95 on T cells from patients with Alzheimer's disease. Meth. Find. Exp. Clin. Pharmacol., 26, 523–529.

    CAS  Google Scholar 

  298. Giacobini, E. (2000) Cholinesterases and cholinesterase inhibitors, Dunitz, London.

    Google Scholar 

  299. Doody, R.S., Dunn, J.K., Clark, C.M., et al. (2001) Chronic donepezil treatment is associated with slowed cognitive decline in Alzheimer's disease. Dement. Geriatr. Cogn. Disord., 12, 295–300.

    CAS  PubMed  Google Scholar 

  300. Farlow, M., Potkin, S., Koumaras, B., Veach, J., Mirski, D. (2003) Analysis of outcome in retrieved dropout patients in a rivastigmine vs placebo, 26-wk, Alzheimer's disease trial. Arch. Neurol., 60, 843–848.

    PubMed  Google Scholar 

  301. Raskind, M.A., Peskind, E.R., Wessel, T., Yuan, W. (2000) Galantamine in AD: a 6-mo randomized, placebo-controlled trial with a 6-mo extension. The Galantamine USA-1 Study Group. Neurology, 54, 2261–2268.

    CAS  PubMed  Google Scholar 

  302. Hogan, D.B., Goldlist, B., Naglie, G., Patterson, C. (2004) Comparison studies of cholinesterase inhibitors for Alzheimer's disease. Lancet Neurol., 3, 622–628.

    CAS  PubMed  Google Scholar 

  303. Cacabelos, R., Takeda, M., Winblad, B. (1999) The glutamatergic system and neurodegeneration in dementia: preventive strategies in Alzheimer disease. Int. J. Geriatr. Psychiatry, 14, 3–47.

    CAS  PubMed  Google Scholar 

  304. Ferris, S.H. (2003) Evaluation of memantine for the treatment of Alzheimer's disease. Expert Opin. Pharmacother., 4, 2305–2313.

    CAS  PubMed  Google Scholar 

  305. Reisberg, B., Doody, R., Stoffler, A., et al. (2003) Memantine in moderate-to-severe Alzheimer's disease. N. Engl. J. Med., 348, 1333–1341.

    CAS  PubMed  Google Scholar 

  306. Sano, M. (2004) Economic effect of cholinesterase inhibitor therapy: implications for managed care. Manag. Care Interface, 17, 44–49.

    PubMed  Google Scholar 

  307. Jones, R.W., McCrone, P., Guilhaume, C. (2004) Cost effectiveness of memantine in Alzheimer's disease: an analysis based on a probabilistic Markov model from a U.K. perspective. Drugs Aging, 21, 607–620.

    CAS  Google Scholar 

  308. Lyseng-Williamson, K.A., Plosker, G.L. (2002) Galantamine: a pharmacoeconomic review of its use in Alzheimer's disease. Pharmacoeconomics, 20, 919–942.

    PubMed  Google Scholar 

  309. Courtney, C., Farrell, D., Gray, R et al. (2004) Long-term donepezil treatment in 565 patients with Alzheimer's disease (AD2000): randomised double-blind trial. Lancet, 363, 2105–2115.

    CAS  PubMed  Google Scholar 

  310. Wimo, A., Winblad, B. (2004) Economic aspects on drug therapy of dementia. Curr. Pharm. Des., 10, 295–301.

    CAS  PubMed  Google Scholar 

  311. Ward, A., Caro, J.J., Getsios, D., Ishak, K., O'Brien, J., Bullock, E. (2003) Assessment of health economics in Alzheimer's disease (AHEAD): treatment with galantamine in U.K. Int. J. Geriatr. Psychiatry, 18, 740–747.

    CAS  PubMed  Google Scholar 

  312. Evans, J.G., Wilcock, G., Birks, J. (2004) Evidence-based pharmacotherapy of Alzheimer's disease. Int. J. Neuropsychopharmacol., 7, 351–369.

    CAS  PubMed  Google Scholar 

  313. Livingstone, G., Katona, C. (2004) The place of memantine in the treatment of Alzheimer's disease: a number needed to treat analysis. Int. J. Geriatr. Psychiatry, 19, 919–925.

    Google Scholar 

  314. Rzeszotarski, W.J. (2003) Alzheimer's disease: search for Therapeutics. In: Burger's medical chemistry and drug discovery, Vol 6, Nervous system agents, Abraham, D.J. (ed.), Wiley, Hoboken, NJ, pp. 743–777.

    Google Scholar 

  315. Lichtenthaler, S.F., Haass, C. (2004) Amyloid at the cutting edge: activation of alpha-secretase prevents amyloidogenesis in an Alzheimer disease mouse model. J. Clin. Invest., 113, 1384–1387.

    CAS  Google Scholar 

  316. Dovey, H.F., John, V., Anderson, J.P., et al. (2001) Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J. Neurochem., 76, 173–181.

    CAS  PubMed  Google Scholar 

  317. Schenk, D., Barbour, R., Dunn, W., et al. (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature, 400, 173–177.

    CAS  PubMed  Google Scholar 

  318. Schenk, D.B., Seubert, P., Grundman, M., Black, R. (2005) Aβ immunotherapy: lessons learned for potential treatment of Alzheimer's disease. Neurodegener. Dis., 2, 255–260.

    CAS  PubMed  Google Scholar 

  319. Racci, M., Govoni, S. (1999) Rationalizing a pharmacological intervention on the amyloid precursor protein metabolism. Trends Pharmacol. Sci., 20, 418–423.

    Google Scholar 

  320. Duff, K. (1999) Curing amyloidosis: will it work in humans? Trends Neurosci., 22, 485–486.

    CAS  PubMed  Google Scholar 

  321. Tomidokoro, Y., Lashley, T., Rostagno, A., et al. (2005) Familial Danish dementia. Co-exist-ence of Danish and Alzheimer amyloid subunits (ADan and Aβ) in the absence of compact plaques. J. Biol. Chem., 280, 36883–36894.

    CAS  PubMed  Google Scholar 

  322. Guo, J.P., Arai, T., Miklossy, J., McGeer, P.L. (2006) Aβ and tau form soluble complexes that may promote self aggregation of both into the insoluble forms observed in Alzheimer's disease. Proc. Natl. Acad. Sci. U. S. A., 103, 1953–1958.

    CAS  PubMed  Google Scholar 

  323. Siddiq, A., Ayoub, I.A., Chavez, J.C., et al. (2005) Hypoxia-inducible factor prolyl 4hydroxylase inhibition. A target for neuroprotection in the central nervous system. J. Biol. Chem., 280, 41732–41743.

    CAS  PubMed  Google Scholar 

  324. Zhou, Y., Wang, Y., Kovacs, M., Jin, J., Zhang, J. (2005) Microglia activation induced by neurodegeneration. Mol. Cell. Proteomics, 4, 1471–1479.

    CAS  PubMed  Google Scholar 

  325. Liu, B., Hong, J.S. (2003) Rome of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J. Pharmacol. Exper. Ther., 304, 1–7.

    CAS  Google Scholar 

  326. Sagi, S.A., Weggen, S., Eriksen, J., Golde, T.E., Koo, E.H. (2003) The non-cyclooxygenase targets of non-steroidal anti-inflammatory drugs, lipoxygenase, proxisome proliferators-acti-vated receptor, inhibitor of κB kinase, and NFκB, do not reduce amyloid β42 production. J. Biol. Chem., 278, 31825–31830.

    CAS  PubMed  Google Scholar 

  327. Rosenberg, R.N. (2005) Translational research on the way to effective therapy for Alzheimer disease. Arch. Gen. Psychiatry, 62, 1186–1192.

    CAS  PubMed  Google Scholar 

  328. Chen, J., Zhou, Y., Mueller-Steiner, S., et al. (2005) SIRT1 protects against microglia-dependent amyloid-β toxicity through inhibiting NF-κB signaling. J. Biol. Chem., 280, 40364–40374.

    CAS  Google Scholar 

  329. Eggert, S., Paliga, K., Soba, P., et al. (2004) The proteolytic processing of the amyloid precursor protein gene family members APLP-1 and APLP-2 involves α-, β-, γ-, and ε-like cleavages. Modulation of APLP-1 processing by N-glycosylation. J. Biol. Chem., 279, 18146–18156.

    CAS  Google Scholar 

  330. Zhao, G., Mao, G., Tan, J., et al. (2004) Identification of a new presenilin-dependent ζ-cleav-age site within the transmembrane domain of amyloid precursor protein. J. Biol. Chem., 279, 50647–50650.

    CAS  PubMed  Google Scholar 

  331. Hong, L., Koelsch, G., Lin, X., et al. (2000) Structure of the protease domain of memapsin 2 (β-secretase) complexed with inhibitor. Science, 290, 150–153.

    CAS  PubMed  Google Scholar 

  332. Kornilova, A.Y., Das, C., Wolfe, M.S. (2003) Differential effects of inhibitors on the γ-secre-tase complex. Mechanistic implications. J. Biol. Chem., 278, 16470–16473.

    CAS  Google Scholar 

  333. Weihofen, A., Lemberg, M.K., Friedmann, E., et al. (2003) Targeting presenilin-type aspartic protease signal peptide peptidase with γ-secretase inhibitors. J. Biol. Chem., 278, 16528–16533.

    CAS  PubMed  Google Scholar 

  334. Steinhilb, M.L., Turner, R.S., Gaut, J.R. (2001) The protease inhibito, MG132, blocks maturationof the amyloid precursor protein Swedish mutant preventing cleavage by β-secretase. J. Biol. Chem., 276, 4476–4484.

    CAS  PubMed  Google Scholar 

  335. Tian, G., Sobotka-Briner, C.D., Zysk, J., et al. (2002) Linear non-competitive inhibition of solubilized human γ-secretase by pepstatin A methylesper, L685458, sulfonamides, and benzodiazepines. J. Biol. Chem., 277, 31499–31505.

    CAS  PubMed  Google Scholar 

  336. Tian, G., Ghanekar, S.V., Aharony, D., et al. (2003) The mechanism of γ-secretase. Multiple inhibitor binding sites for transition state analog and small molecule inhibitors. J. Biol. Chem., 278, 28968–28975.

    CAS  PubMed  Google Scholar 

  337. Wong, G.T., Manfra, D., Poulet, F.M., et al. (2004) Chronic treatment with the γ-secretase inhibitor LY-411,575 inhibits β-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J. Biol. Chem., 279, 12876–12882.

    CAS  PubMed  Google Scholar 

  338. Kim, D.Y., MacKenzie Ingano, L.A., Kovacs, D.M. (2002) Nectin-1α, an immunoglobulin-like receptor involved in the formation of synapses, is a substrate for presenilin/γ-secretase-like cleavage. J. Biol. Chem., 277, 49976–49981.

    CAS  PubMed  Google Scholar 

  339. Nyborg, A.C., Ladd, T.B., Zwizinski, C.W., Lah, J.J., Golde, T.E. (2006) Sortilin, SorCS1b, and SorLA Vps10p sorting receptors, are novel γ-secretase substrates. Mol. Neurodegener., 1, 3.

    PubMed  Google Scholar 

  340. Lleö, A., Berezovska, O., Ramdya, P., et al. (2003) Notch 1 competes with the amyloid precursor protein for γ-secretase and down-regulates presenilin-1 gene expression. J. Biol. Chem., 278, 47370–47375.

    PubMed  Google Scholar 

  341. Espeseth, A.S., Xu, M., Huand, Q., et al. (2005) Compounds that bind APP and inhibit Aβprocessing in vitro suggest a novel approach to Alzheimer disease therapeutics. J. Biol. Chem., 280, 17792–17797.

    CAS  PubMed  Google Scholar 

  342. Rockenstein, E., Mante, M., Alford, M., et al. (2005) High β-secretase activity elicits neurodegeneration in transgenic mice despite reductions in amyloid-β levels. Implications for the treatment of Alzheimer's disease. J. Biol. Chem., 280, 32957–32967.

    CAS  PubMed  Google Scholar 

  343. Von Arnim, C.A.F., Kinoshita, A., Peltan, I.D., et al. (2005) The low density lipoprotein receptor-related protein (LRP) is a novel β-secretase (BACE1) substrate. J. Biol. Chem., 280, 17777–17785.

    Google Scholar 

  344. Lleö, A., Waldron, E., von Arnin, C.A.F., et al. (2005) Low density lipoprotein receptor-related protein (LRP) interacts with presenilin 1 and is a competitive substrate of the amyloid precursor protein (APP) for γ-secretase. J. Biol. Chem., 280, 27303–27309.

    PubMed  Google Scholar 

  345. Jutras, I., Laplante, A., Boulais, J., Brunet, S., Thinakaran, G., Desjardins, M. (2005) γ-Secretase is a functional component of phagosomes. J. Biol. Chem., 280, 36310–36317.

    CAS  PubMed  Google Scholar 

  346. Xie, J., Guo, Q. (2005) PAR-4 is involved in regulation of β-secretase cleavage of the Alzheimer amyloid precursor protein. J. Biol. Chem., 280, 13824–13832.

    CAS  PubMed  Google Scholar 

  347. Pike, L.J. (2003) Lipid rafts: bringing order to caos. J. Lipid Res., 44, 655–667.

    CAS  PubMed  Google Scholar 

  348. Chauhan, N.B. (2003) Membrane dynamics, cholesterol homeostasis, and Alzheimer's disease. J. Lipid Res., 44, 2019–2029.

    CAS  PubMed  Google Scholar 

  349. Ehehalt, R., Keller, P., Haass, C., Thiele, C., Simons, K. (2003) Amyloidogenic processing of the Alzheimer ?-amyloid precursor protein depends on lipid rafts. J. Cell. Biol., 160, 113–123.

    CAS  PubMed  Google Scholar 

  350. Cohen, A.W., Hnasko, R., Schubert, W., Lisanti, M.P. (2004) Role of caveolae and caveolins in health and disease. Physiol. Rev., 84, 1341–1379.

    CAS  PubMed  Google Scholar 

  351. Kalvodova, L., Kahya, N., Schwille, P., et al. (2005) Lipids as modulators of proteolytic activity of BACE. Involvement of cholesterol, gycosphingolipids, and anionic phospholipids in vitro. J. Biol. Chem., 280, 36815–36823.

    CAS  PubMed  Google Scholar 

  352. Sawamura, N., Ko, M., Yu, W., et al. (2004) Modulation of amyloid precursor protein cleavage by cellular sphingolipids. J. Biol. Chem., 279, 11984–11991.

    CAS  PubMed  Google Scholar 

  353. Van Blitterswijk, W.J., van der Luit, A.H., Veldman, R.J., Verheij, M., Borst, J. (2003) Ceramide: second messenger or modulator of membrane structure and dynamics? Biochem. J., 369, 199–211.

    Google Scholar 

  354. Puglielli, L., Ellis, B.C., Saunders, A.J., Kovacs, D.M. (2003) Ceramide stabilizes β-site amyloid precursor protein-cleaving enzyme-1 and promotes amyloid β-peptide biogenesis. J. Biol. Chem., 278, 19777–19783.

    CAS  PubMed  Google Scholar 

  355. Cole, S.L., Grudzien, A., Manhart, I.O., Kelly, B.L., Oakley, H., Vassar, R. (2005) Statins cause intracellular accumulation of amyloid precursor protein, β-secretase-cleaved fragments, and amyloid β-peptide via an isoprenoid-dependent mechanism. J. Biol. Chem., 280, 18755–18770.

    CAS  PubMed  Google Scholar 

  356. Nelson, T.J., Alkon, D.L. (2005) Oxidation of cholesterol by amyloid precursor protein and β-amyloid peptide. J. Biol. Chem., 280, 7377–7387.

    CAS  PubMed  Google Scholar 

  357. Schulz, J.G., Annaert, W., Vandkerckhove, J., Zimmermann, P., De Strooper, B., David, G. (2003) Syndecan 3 intramembrane proteolysis is presenilin/γ-secretase-dependent and modulates cytosolic signaling. J. Biol. Chem., 278, 48651–48657.

    CAS  PubMed  Google Scholar 

  358. Qin, W., Ho, L., Pompl, P.N., et al. (2003) Cyclooxygenase (COX)-2 and COX-1 potentiate ?-amyloid peptide generation through mechanisms that involve γ-secretase activity. J. Biol. Chem., 278, 50970–50977.

    CAS  PubMed  Google Scholar 

  359. Takahashi, Y., Hayashi, I., Tominari, Y., et al. (2003) Sulindac sílfide is a noncompetitive γ-secretase inhibitor that preferentially reduces Aβ42 generation. J. Biol. Chem., 278, 18664–18670.

    CAS  PubMed  Google Scholar 

  360. Beher, D., Clarke, E.E., Wrigley, J.D.J., et al. (2004) Selected non-steroidal anti-inflamma-tory drugs and their derivatives target γ-secretase at a novel site. J. Biol. Chem., 279, 43419–43426.

    CAS  PubMed  Google Scholar 

  361. Wang, D.S., Dickson, D.W., Malter, J.S. (2006) β-Amyloid degradation and Alzheimer's disease. J. Biomed. Biotechnol., 2006(3), 58406.

    Google Scholar 

  362. Eckman, E.A., Watson, M., Marlow, L., Sambamurti, K., Eckman, C.B. (2003) Alzheimer's disease β-amyloid peptide is increased in mice deficient in endothelin-converting enzyme. J. Biol. Chem., 278, 2081–2084.

    CAS  PubMed  Google Scholar 

  363. Edbauer, D., Willem, M., Lammich, S., Steiner, H., Haass, C. (2002) Insulin-degrading enzyme rapidly removes the β-amyloid precursor protein intracellular domain (AICD). J. Biol. Chem., 277, 13389–13393.

    CAS  PubMed  Google Scholar 

  364. Iversen, L. (2002) Small drugs leaded the attack. Nature, 417, 231–233.

    CAS  PubMed  Google Scholar 

  365. Pepys, M.B., Herbert, J., Hutchinson, W.L., et al. (2002) Targeted pharmacological depletion of serum amyloid P component for treatment of human amyloidosis. Nature, 417, 254–259.

    CAS  PubMed  Google Scholar 

  366. Harkany, T., Hortobagyi, T., Sasvari, M., et al. (1999) Neuroprotective approaches in experimental models of β-amyloid neurotoxicity: relevance to Alzheimer's disease. Prog. Neuropsychopharmacol. Biol. Psychiatry, 23, 963–1008.

    CAS  PubMed  Google Scholar 

  367. Soto, C. (1999) Amyloid disrupting drugs. Potential in the treatment of Alzheimer's disease. CNS Drugs, 12, 347–356.

    CAS  Google Scholar 

  368. Soto, C., Sigurdsson, E.M., Morelli, L., Kumar, B.A., Castaño, E.M., Grangioni, B. (1998) β-Sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer's therapy. Nat. Med., 4, 822–826.

    CAS  PubMed  Google Scholar 

  369. Soto, C., Estrada, L. (2005) Amyloid inhibitors and beta-sheet breakers. Subcell. Biochem., 38, 351–364.

    CAS  PubMed  Google Scholar 

  370. Yong, V.W., Krekoski, C.A., Forsyth, P.A., Bell, R., Edwards, D.R. (1998) Matrix metalloproteinases and diseases of the CNS. Trends Neurosci., 21, 75–80.

    CAS  PubMed  Google Scholar 

  371. Cherny, R.A. (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer's disease transgenic mice. Neuron, 30, 665–676.

    CAS  PubMed  Google Scholar 

  372. Ritchie, C.W., Bush, A.I., Masters, C.L. (2004) Metal-protein attenuating compounds and Alzheimer's disease. Expert Opin. Investig. Drugs, 13, 1585–1592.

    CAS  PubMed  Google Scholar 

  373. Treiber, C., Simons, A., Strauss, M., et al. (2004) Clioquinol mediates copper uptake and counteracts copper efflux activities of the amyloid precursor protein of Alzheimer's disease. J. Biol. Chem., 279, 51958–51964.

    CAS  PubMed  Google Scholar 

  374. Raman, B., Ban, T., Yamaguchi, K., et al. (2005) Metal ion-dependent effects of clioquinol on the fibril growth of an amyloid β peptide. J. Biol. Chem., 280, 16157–16162.

    CAS  PubMed  Google Scholar 

  375. Domingo, J.L. (2006) Aluminium and other metals in Alzheimer's disease: a review of potential therapy with chelating agents. J. Alzheimer Dis., 10, 331–341.

    Google Scholar 

  376. White, A.R., Barnham, K.J., Bush, A.I. (2006) Metal homeostasis in Alzheimer's disease. Expert Rev. Ther., 6, 711–722.

    CAS  Google Scholar 

  377. Yang, F., Lim, G.P., Begum, A.N., et al. (2005) Curcumin inhibits formation of amyloid βoligomers and fibrils, binds plaques, and reduces amyloid in vitro. J. Biol. Chem., 280, 5892–5901.

    CAS  PubMed  Google Scholar 

  378. Lim, G.P., Calon, F., Morihara, T., et al. (2005) A diet enriched with the omega-3 fatty acid decosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J. Neurosci., 23, 3032–3040.

    Google Scholar 

  379. Adesi, C., Frossard, M.J., Boissard, C., et al. (2003) Pharmacological profile of peptide drug candidates for treatment of Alzheimer's disease. J. Biol. Chem., 278, 13905–13911.

    Google Scholar 

  380. Rzepecki, P., Nagel-Steger, L., Feuerstein, S., et al. (2004) Prevention of Alzheimer's dis-ease-associated Aβ aggregation by rationally designed nonpeptide β-sheet ligands. J. Biol. Chem., 279, 47497–47505.

    CAS  PubMed  Google Scholar 

  381. Lashuel, H.A., Hartley, D.M., Balakhaneh, D., Aggarwal, A., Teichberg, S., Callaway, D.J.E. (2002) New class of inhibitors of amyloid-β fibril formation. Implications for the mechanism of pathogenesis in Alzheimer's disease. J. Biol. Chem., 277, 42881–42890.

    CAS  PubMed  Google Scholar 

  382. Ferrao-Gonzales, A.D., Robbs, B.K., Moreau, V.H., et al. (2005) Controlling β-amyloid oligomerization by the use of naphthalene sulfonates. Trapping low molecular weight oligomeric species. J. Biol. Chem., 280, 34747–34754.

    CAS  PubMed  Google Scholar 

  383. Chalifour, R.J., MacLaughlin, R.W., Lavoie, L., et al. (2003) Stereoselective interactions of peptide inhibitors with the β-amyloid peptide. J. Biol. Chem., 278, 34874–34881.

    CAS  PubMed  Google Scholar 

  384. Hock, C., Konietzko, U., Papassotiropoulos, A., et al. (2002) Generation of antibodies specific for beta-amyloid by vaccination of patients with Alzheimer's disease. Nat. Med., 8, 1270–1275.

    CAS  Google Scholar 

  385. Hock, C., Konietzko, U., Streffer, J.R., et al. (2003) Antibodies against beta-amyloid slow cognitive decline in Alzheimer's disease. Neuron, 38, 547–554.

    CAS  PubMed  Google Scholar 

  386. Bayer, A.J., Bullock, R., Jones, R.W., et al. (2005) Evaluation of the safety and immunogenicity of synthetic Aβ 42 (AN1792) in patients with AD. Neurology, 64, 94–101.

    CAS  PubMed  Google Scholar 

  387. Orgogozo, J.M., Gilman, S., Dartigues, J.F., et al. (2003) Subacute meningoencephalitis in a subset of patients with AD after Aβ immunization. Neurology, 61, 46–54.

    CAS  PubMed  Google Scholar 

  388. Asami-Odaka, A., Obayashi-Adachi, Y., Matsumoto, Y., et al. (2005) Passive immunization of the Aβ42(43) C-terminal-specific antibody BC05 in a mouse model of Alzheimer's disease. Neurodegener. Dis., 2, 36–43.

    CAS  PubMed  Google Scholar 

  389. Morgan, D. (2006) Immunotherapy for Alzheimer's disease. J. Alzheimer Dis., suppl. 3, 425–432.

    Google Scholar 

  390. Solomon, B. (2006) Alzheimer's disease immunotherapy: from in vitro amyloid immunomodulation to in vivo vaccination. J. Alzheimer Dis., suppl. 3, 433–438.

    Google Scholar 

  391. Dasilva, K.A., Aubert, I., McLaurin, J. (2006) Vaccine development for Alzheimer's disease. Curr. Pharm. Des., 12, 4283–4293.

    CAS  PubMed  Google Scholar 

  392. Avila, J., Lucas, J.J., Pérez, M., Hernández, F. (2004) Role of tau protein in both physiological and pathological conditions. Physiol. Rev., 84, 361–384.

    CAS  PubMed  Google Scholar 

  393. Mooberry, S.L., Randall-Hlubek, D.A., Leal, R.M., et al. (2004) Microtubule-stabilizing agents based on designed laulimalide analogues. Proc. Natl. Acad. Sci. U. S. A., 101, 8803–8808.

    CAS  PubMed  Google Scholar 

  394. Billingsley, M.L., Kincaid, R.L. (1997) Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem. J., 323, 577–591.

    CAS  PubMed  Google Scholar 

  395. Taniguchi, S., Suzuki, N., Masuda, M., et al. (2005) Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. J. Biol. Chem., 280, 7614–7623.

    CAS  PubMed  Google Scholar 

  396. Pickhardt, M., Gazova, Z., von Bergen, M., et al. (2005) Anthraquinones inhibit tau aggregation and dissolve Alzheimer's paired helical filaments in vitro and in cells. J. Biol. Chem., 280, 3628–3635.

    CAS  PubMed  Google Scholar 

  397. Liu, F., Iqbal, K., Grundke-Iqbal, I., Rossie, S., Gong, C.X. (2005) Dephosphorylation of tau by protein phosphatase 5. Impairment in Alzheimer's disease. J. Biol. Chem., 280, 1790–1796.

    CAS  PubMed  Google Scholar 

  398. McCain, D.F., Wu, L., Nickel, P., et al. (2004) Suramin derivatives as inhibitors and activators of protein-tyrosine phosphatases. J. Biol. Chem., 279, 14713–14725.

    CAS  PubMed  Google Scholar 

  399. Agarwal-Mawal, A., Qureshi, H., Cafferty, P.W., et al. (2003) 14-3-3 connects glycogen synthase kinase-3β to tau within a brain microtubule-associated tau phosphorylation complex. J. Biol. Chem., 278, 12722–12728.

    CAS  PubMed  Google Scholar 

  400. Bhat, R., Xue, Y., Berg, S., et al. (2003) Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. J. Biol. Chem., 278, 45937–45945.

    CAS  PubMed  Google Scholar 

  401. Leclerc, S., Garnier, M., Hoessel, R. (2001) et al. Indirubins inhibit glycogen synthase kinase-3β and CDK5/P25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer's disease. A property common to most cyclin-dependent kinase inhibitors. J. Biol. Chem., 276, 251–260.

    CAS  PubMed  Google Scholar 

  402. Frame, S., Cohen, P. (2001) GSK3 takes centre stage more than 20 yr after its discovery. Biochem. J., 359, 1–16.

    CAS  PubMed  Google Scholar 

  403. Dickey, C.A., Ash, P., Klosak, N., et al. (2006) Pharmacologic reductions of total tau levels; implications for the role of microtubule dynamics in regulating tau expression. Mol. Neuroder., 1:6 doi:10.1186/1750-1326-1-6.

    Google Scholar 

  404. Taylor, J.P., Hardy, J., Fischbeck, K.H. (2002) Toxic proteins in neurodegenerative disease. Science, 296, 1991–1995.

    CAS  PubMed  Google Scholar 

  405. Westerheide, S.D., Morimoto, R. (2005) Heat shock response modulators as therapeutic tools for diseases of protein conformation. J. Biol. Chem., 280, 33097–330100.

    CAS  PubMed  Google Scholar 

  406. Flood, F., Murphy, S., Cowburn, R., Lannfelt, L., Walker, B., Johnston, J.A. (2005) Proteasome-mediated effects of amyloid precursor protein processing at the γ-secretase site. Biochem. J., 5, 545–550.

    Google Scholar 

  407. Marambaud, P., Zhao, H., Davies, P. (2005) Resveratrol promotes clearance of Alzheimer's disease amyloid-β peptides. J. Biol. Chem., 280, 37377–37382.

    CAS  PubMed  Google Scholar 

  408. Menéndez-Benito, V., Verhoef, L.G.G.C., Masucci, M.G., Dantuma, N.P. (2005) Endoplasmic reticulum stress compromises the ubiquitin-proteasome system. Hum. Mol. Genet., 14, 2787–2799.

    PubMed  Google Scholar 

  409. Petrucelli, L., Dickson, D., Kehoe, K., et al. (2004) CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum. Mol. Genet., 13, 703–714.

    CAS  PubMed  Google Scholar 

  410. Hay, D.G., Sathasivam, K., Tobaben, S., et al. (2004) Progressive decrease in chaperone protein levels in a mouse model of Huntington's disease and induction of stress proteins as a therapeutic approach. Hum. Mol. Genet., 13, 1389–1405.

    CAS  PubMed  Google Scholar 

  411. Wall, N.R., Shi, Y. (2003) Small RNA: can RNA interference be exploited for therapy? Lancet, 362, 1401–1403.

    CAS  PubMed  Google Scholar 

  412. Paulson, H. (2006) RNA interference as potential therapy for neurodegenerative disease: applications to inclusion-body myositis? Neurology, 66(2 suppl. 1), S114–S117.

    CAS  Google Scholar 

  413. Grunweller, A., Hartmann, R.K. (2005) RNA interference as a gene-specific approach for molecular medicine. Curr. Med. Chem., 12, 3143–3161.

    CAS  PubMed  Google Scholar 

  414. Jones, S.J.M. (2006) Prediction of genomic functional elements. Annu. Rev. Genomics Hum. Genet., 7, 315–338.

    CAS  PubMed  Google Scholar 

  415. Agrawal, N., Dasaradhi, P.V.N., Mohmmed, A., Malhotra, P., Bhatnagar, R.K., Mukherjee, S.K. (2003) RNA interference: biology, mechanism, and applications. Microbiol. Mol. Biol. Rev., 67, 657–685.

    CAS  PubMed  Google Scholar 

  416. Lu, P.Y., Xie, F., Woodle, M.C. (2005) In vivo application of RNA interference: from functional genomics to therapeutics. Adv. Genet., 54, 117–142.

    CAS  PubMed  Google Scholar 

  417. Caplen, N.J., Taylor, J.P., Statham, V.S., Tanaka, F., Fire, A., Morgan, R.A. (2002) Rescue of polyglutamine-mediated cytotoxicity by double-stranded RNA-mediated RNA interference. Hum. Mol. Genet., 11, 175–184.

    CAS  PubMed  Google Scholar 

  418. Miller, V.M., Gouvion, C.M., Davidson, B.L., Paulson, H.L. (2004) Targeting Alzheimer's disease genes with RNA interference: an efficient strategy for silencing mutant alleles. Nucleic Acids Res., 32, 661–668.

    CAS  PubMed  Google Scholar 

  419. Feng, X., Zhao, P., He, Y., Zuo, Z. (2006) Allele-specific silencing of Alzheimer's disease genes: the amyloid precursor protein genes with Swedish or London mutations. Gene, 371, 68–74.

    CAS  PubMed  Google Scholar 

  420. Sakai, T., Hohjoh, H. (2006) Gene silencing analyses against amyloid precursor protein (APP) gene family by RNA interference. Cell. Biol. Int. E-pub ahead of print.

    Google Scholar 

  421. Xie, Z., Romano, D.M., Tanzi, R.E. (2005) Effect of RNAi-mediated silencing of PEN-2, APH-1a, and nicastrin on wild-type vs fAD mutant forms of presenilin 1. J. Mol. Neurosci., 25, 67–77.

    PubMed  Google Scholar 

  422. Luo, H.M., Deng, H., Xiao, F., et al. (2004) Down-regulation amyloid beta-protein 42 production by interfering with transcript of presenilin 1 gene with siRNA. Acta Pharmacol. Sin., 25, 1613–1618.

    CAS  PubMed  Google Scholar 

  423. Kao, S.C., Krichevsky, A.M., Kosik, K.S., Tsai, L.H. (2004) BACE1 suppression by RNA interference in primary cortical neurons. J. Biol. Chem., 279, 1942–1949.

    CAS  PubMed  Google Scholar 

  424. Scarpa, S., Cavallaro, R.A., D'Anselmi, F., Fuso, A. (2006) Gene silencing through methylation: an epigenetic intervention on Alzheimer disease. J. Alzheimer Dis., 9, 407–414.

    CAS  Google Scholar 

  425. Emilien, G., Ponchon, M., Caldas, C., Isacson, O., Maloteux, J.M. (2000) Impact of genomics on drug discovery and clinical medicine. Q. J. Med., 93, 391–423.

    CAS  Google Scholar 

  426. Verrils, N.M. (2006) Clinical proteomics: present and future prospects. Clin. Biochem. Rev., 27, 99–116.

    Google Scholar 

  427. Meyer, U.A. (2004) Pharmacogenetics–five decades of therapeutic lessons from genetic diversity. Nat. Rev. Genet., 5, 669–676.

    CAS  PubMed  Google Scholar 

  428. Van Dam, D., De Deyn, P.P. (2006) Drug discovery in dementia: the role of rodent models. Nature Rev. Drug Discov., 5, 956–970.

    Google Scholar 

  429. Evans, K.L., Muir, W.J., Blackwood, D.H.R., Porteus, D.J. (2001) Nuts and bolts of psychiatric genetics: building on the human genome project. Trends Genet., 17, 35–40.

    CAS  Google Scholar 

  430. Evans, W.E., Relling, M.V. (1999) Pharmacogenomics: translating functional genomics into rational therapeutics. Science, 286, 487–491.

    CAS  Google Scholar 

  431. Arranz, M.J., Collier, D., Kerwin, R.W. (2001) Pharmacogenetics for the individualization of psychiatric treatment. Am. J. Pharmacogenomics, 1, 3–10.

    CAS  PubMed  Google Scholar 

  432. Sink, K.M., Holden, K.F., Yaffe, K. (2005) Pharmacological treatment of neuropsychiatric symptoms of dementia. A review of the evidence. JAMA, 293, 596–608.

    CAS  PubMed  Google Scholar 

  433. Kalow, W., Grant, D.M. (2001) Pharmacogenetics. In: The metabolic and molecular bases of inherited disease, Scriver, C.R., Beaudet, A.L., Sly, W.S., et al. (eds.), McGraw-Hill, New York, pp. 225–255.

    Google Scholar 

  434. Tribut, O., Lessard, Y., Reymann, J.M., Allain, H., Bentue-Ferrer, D. (2002) Pharmacogenomics. Med. Sci. Monit., 8, 152–163.

    Google Scholar 

  435. Saito, S., Ishida, A., Sekine, A., et al. (2003) Catalog of 680 variants among eight cytochrome P450 (CYP) genes: nine esterase genes, and two other genes in the Japanese population. J. Hum. Genet., 48, 249–270.

    CAS  PubMed  Google Scholar 

  436. International Centre for Genetic Engineering and Biotechnology home page. Available at: www.icgeb.org/.

    Google Scholar 

  437. CYP8A1 allele nomenclature. Available at: www.cypalleles.ki.se/cyp8a1.htm.

    Google Scholar 

  438. Wooding, S.P., Watkins, W.S., Bamshad, M.J., et al. (2002) DNA sequence variations in a 3.7-kb noncoding sequence 5-prime of the CYP1A2 gene: implications for human population history and natural selection. Am. J. Hum. Genet., 71, 528–542.

    CAS  PubMed  Google Scholar 

  439. Mizutani, T. (2003) PM frequencies of major CYPs in Asians and Caucasians. Drug Metab. Rev., 35, 99–106.

    CAS  Google Scholar 

  440. Gaikovitch, E.A., Cascorbi, I., Mrozikiewicz, P.M., et al. (2003) Polymorphisms of drug-metabolizing enzymes CYP2C9, CYP2C19, CYP2D6, CYP1A1, NAT2 and of P-glycopro-tein in a Russian population. Eur. J. Clin. Pharmacol., 59, 303–312.

    CAS  PubMed  Google Scholar 

  441. Xie, H.G., Prasad, H.G., Kim, R.B., Stein, C.M. (2002) CYP2C9 allelic variants: ethnic distribution and functional significance. Adv. Drug Deliv. Rev., 54, 1257–1270.

    CAS  PubMed  Google Scholar 

  442. Dickmann, L.J., Rettie, A.E., Kneller, M.B., et al. (2001) Identification and functional characterization of a new CYP2C9 variant (CYP2C9*51) expressed among African Americans. Mol. Pharmacol., 60, 382–387.

    CAS  PubMed  Google Scholar 

  443. Xie, H.G., Kim, R.B., Wood, A.J., Stein, C.M. (2001) Molecular basis of ethnic differences in drug disposition and response. Annu. Rev. Pharm. Toxicol., 41, 815–850.

    CAS  Google Scholar 

  444. Isaza, C.A., Henao, J., Löpez, A.M., Cacabelos, R. (2000) Isolation, sequence and genotyping of the drug metabolizer CYP2D6 gene in the Colombian population. Meth. Find. Exp. Clin. Pharmacol., 22, 695–705.

    CAS  Google Scholar 

  445. Madan, A., Graham, R.A., Carroll, K.M., et al. (2003) Effects of prototypical microsomal enzyme inducers on cytochrome P450 expression in cultured human hepatocytes. Drug Metab. Dispos., 31, 421–431.

    CAS  PubMed  Google Scholar 

  446. Hedlund, E., Gustafsson, J.A., Warner, M. (2001) Cytochrome P450 in the brain: a review. Curr. Drug Metabol., 2, 245–263.

    CAS  Google Scholar 

  447. Pharmacogenetics and Pharmacogenomics Knowledge Base home page. Available at: www. pharmgkb.org/.

    Google Scholar 

  448. Pascussi, J.M., Gerbal-Chaloin, S., Drocourt, L., Maurel, P., Vilarem, M.J. (2003) The expression of CYP2B6, CYP2C9 and CYP2A4 genes: a tangle of networks of nuclear and steroid receptors. Biochim. Biophys. Acta, 1619, 243–253.

    CAS  Google Scholar 

  449. Honkakoski, P., Negishi, M. (2000) Regulation of cytochrome P450 (CYP) genes by nuclear receptors. Biochem. J., 347, 321–337.

    CAS  PubMed  Google Scholar 

  450. Wedlund, P. (2000) The CYP2C19 enzyme polymorphism. Pharmacology, 61, 174–183.

    CAS  Google Scholar 

  451. Sachse, C., Brockmoller, J., Bauer, S., Roots, I. (1997) Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am. J. Hum. Genet., 60, 284–295.

    CAS  PubMed  Google Scholar 

  452. Bentue-Ferrer, D., Tribut, O., Polard, E., Allain, H. (2003) Clinically significant drug interactions with cholinesterase inhibitors: a guide for neurologists. CNS Drugs, 17, 947–963.

    CAS  PubMed  Google Scholar 

  453. Human Cytochrome P450 (CYP) Allele Nomenclature Committee home page. Available at: www.imm.ki.se/CYPalleles/cyp2d6.htm.

    Google Scholar 

  454. Griese, E.-U., Zanger, U.M., Brudermanns, U., et al. (1998) Assessment of the predictive power of genotypes for the in-vivo catalytic function of CYP2D6 in a German population. Pharmacogenetics, 8, 15–26.

    CAS  PubMed  Google Scholar 

  455. Bernal, M.L., Sinues, B., Johansson, I., et al. (1999) Ten percent of North Spanish individuals carry duplicated or triplicated CYP2D6 genes associated with ultrarapid metabolism of debrisoquine. Pharmacogenetics, 9, 657–660.

    CAS  PubMed  Google Scholar 

  456. Bernard, S., Neville, K.A., Nguyen, A.T., Flockhart, D.A. (2006) Interethnic differences in genetic polymorphisms of CYP2D6 in the U.S. population: clinical implications. Oncologist, 11, 126–135.

    CAS  PubMed  Google Scholar 

  457. Raimundo, S., Fischer, J., Eichelbaum, M., Griese, E.U., Schwab, M., Zanger, B. (2000) Elucidation of the genetic basis of the common intermediate metabolizer phenotype for drug oxidation by CYP2D6. Pharmacogenetics, 10, 577–581.

    CAS  PubMed  Google Scholar 

  458. Rasmussen, J.O., Christensen, M., Svendsen, J.M., Skausig, O., Hansen, E.L., Nielsen, K.A. (2006) CYP2D6 gene test in psychiatric patients and healthy volunteers. Scand. J. Clin. Lab. Invest., 66, 129–136.

    CAS  PubMed  Google Scholar 

  459. Yamada, H., Dahl, M.L., Viitanen, M., Winblad, B., Sjoqvist, F., Lannfelt, L. (1998) No association between familial Alzheimer disease and cytochrome P450 polymorphisms. Alzheimer Dis. Assoc. Disord., 12, 204–207.

    CAS  PubMed  Google Scholar 

  460. Chen, X., Xia, Y., Alford, M., et al. (1995) The CYP2D6B allele is associated with a milder synaptic pathology in Alzheimer's disease. Ann. Neurol., 38, 653–658.

    CAS  PubMed  Google Scholar 

  461. Cervilla, J.A., Russ, C., Holmes, C., et al. (1999) CYP2D6 polymorphisms in Alzheimer's disease, with and without extrapyramidal signs, showing no apolipoprotein E epsilon 4 effect modification. Biol. Psychiatry, 45, 426–429.

    CAS  PubMed  Google Scholar 

  462. Atkinson, A., Singleton, A.B., Steward, A., et al. (1999) CYP2D6 is associated with Parkinson's disease but not with dementia with Lewy bodies or Alzheimer's disease. Pharmacogenetics, 9, 31–35.

    CAS  Google Scholar 

  463. Nicholl, D.J., Bennett, P., Hiller, L., et al. (1999) A study of five candidate genes in Parkinson's disease and related neurodegenerative disorders. European Study Group on Atypical Parkinsonism. Neurology, 53, 1415–1421.

    CAS  PubMed  Google Scholar 

  464. Woo, S.I., Kim, J.W., Seo, H.G., et al. (2001) CYP2D6*4 polymorphism is not associated with Parkinson's disease and has no protective role against Alzheimer's disease in the Korean population. Psychiatry Clin. Neurosci., 55, 373–377.

    CAS  PubMed  Google Scholar 

  465. Furuno, T., Kawanishi, C., Iseki, E., et al. (2001) No evidence of an association between CYP2D6 polymorphisms among Japanese and dementia with Lewy bodies. Psychiatry Clin. Neurosci., 55, 89–92.

    CAS  PubMed  Google Scholar 

  466. Scordo, M.G., Dahl, M.L., Spina, E., Cordici, F., Arena, M.G. (2006) No association between CYP2D6 polymorphisms and Alzheimer's disease in an Italian population. Pharmacol. Res., 53, 162–165.

    CAS  PubMed  Google Scholar 

  467. Farlow, M.R. (2003) Clinical pharmacokinetics of galantamine. Clin. Pharmacokinet., 42, 1383–1392.

    CAS  PubMed  Google Scholar 

  468. Haugh, K.H., Bogen, I.L., Osmundsen, H., Walaas, I., Fonnum, F. (2005) Effects of cholinergic markers in rat brain and blood after short and prolonged administration of donepezil. Neurochem. Res., 30, 1511–1520.

    Google Scholar 

  469. Cacabelos, R. (2007) Pleiotropic effects of APOE in dementia: Influence on functional genomics and pharmacogenetics. In: Advances in Alzheimer's and Parkinson's disease. Insights, progress, and perspectives, Fisher, A., Hanin, I., Stocchi, F., Memo, M. (eds.), Springer, Secaucus, NJ, in press.

    Google Scholar 

  470. Varsaldi, F., Miglio, G., Scordo, M.G., et al. (2006) Impact of the CYP2D6 polymorphism on steady-state plasma concentrations and clinical outcome of donepezil in Alzheimer's disease patients. Eur. J. Clin. Pharmacol., 62, 721–726.

    CAS  PubMed  Google Scholar 

  471. Barner, E.L., Gray, S.L. (1998) Donepezil use in Alzheimer disease. Ann. Pharmacother., 32, 70–77.

    CAS  Google Scholar 

  472. Lilienfeld, S. (2002) Galantamine–a novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer's disease. CNS Drug Rev., 8, 159–176.

    CAS  PubMed  Google Scholar 

  473. Bachus, R., Bickel, U., Thomsen, T., Roots, I., Kewitz, H. (1999) The O-demethylation of the antidementia drug galantamine is catalyzed by cytochrome P450 2D6. Pharmacogenetics, 9, 661–669.

    CAS  PubMed  Google Scholar 

  474. Nordberg, A., Svensson, A.L. (1998) Cholinesterase inhibitors in the treatment of Alzheimer's disease: a comparison of tolerability and pharmacology. Drug Saf., 19, 465–480.

    CAS  PubMed  Google Scholar 

  475. Zhao, Q., Brett, M., van Osselaer, N., et al. (2002) Galantamine pharmacokinetics, safety, and tolerability profiles are similar in healthy Caucasian and Japanese subjects. J. Clin. Pharmacol., 42, 1002–1010.

    CAS  PubMed  Google Scholar 

  476. Crismon, M.L. (1998) Pharmacokinetics and drug interactions of cholinesterase inhibitors administered in Alzheimer's disease. Pharmacotherapy, 18, 47–54.

    CAS  PubMed  Google Scholar 

  477. Mannens, G.S., Snel, C.A., Hendrickx, J., et al. (2002) The metabolism and excretion of galantamine in rats, dogs, and humans. Drug Metab. Dispos., 30, 553–563.

    CAS  PubMed  Google Scholar 

  478. Egger, S.S., Bachmann, A., Hubmann, N., Schlienger, R.G., Krähenbühl, S. (2006) Prevalence of potentially inappropriate medication use in elderly patients. Comparison between general medicine and geriatric wards. Drugs Aging, 23, 823–837.

    PubMed  Google Scholar 

  479. Schuetz, E.G., Relling, M.V., Kishi, S., et al. (2004) PharGKB update: II. CYP3A5, cytochrome P450, family 3, subfamily A, polypeptide 5. Pharmacol. Rev., 56, 159.

    CAS  PubMed  Google Scholar 

  480. Roses, A.D., Strittmatter, W.J., Pericak-Vance, M.A., et al. (1994) Clinical application of apolipoprotein E genotyping to Alzheimer's disease. Lancet, 343, 1564–1565.

    CAS  PubMed  Google Scholar 

  481. Cacabelos, R., Lao, J.I., Beyer, K., Alvarez, X.A., Franco-Maside, A. (1996) Genetic testing in Alzheimer's disease: APOE genotyping and etiopathogenic factors. Meth. Find. Exp. Clin. Pharmacol., 18(suppl. A), 161–178.

    Google Scholar 

  482. Bickeboller, H., Campion, D., Brice, A., et al. (1997) Apolipoprotein E and Alzheimer disease: genotype-specific risks by age and sex. Am. J. Hum. Genet., 60, 439–446.

    CAS  PubMed  Google Scholar 

  483. Fullerton, S.M., Clark, A.G., Weiss, K.M., et al. (2002) Sequence polymorphism at the human apolipoprotein AII gene (APOA2): unexpected deficit of variation in an African-American sample. Hum. Genet., 111, 75–87.

    CAS  PubMed  Google Scholar 

  484. Salero, E., Perez-Sen, R., Aruga, J., Gimenez, C., Zafra, F. (2001) Transcription factor Zic1 and Zic2 bind and transactive the apolipoprotein E gene promoter. J. Biol. Chem., 278, 1881–1888.

    Google Scholar 

  485. Aruga, J., Yokota, N., Hashimoto, M., Furuichi, T., Fukuda, M., Mikoshiba, K. (1994) A novel zinc finger protein, Zic, is involved in neurogenesis, especially in the cell lineage of cerebellar granule cells. J. Neurochem., 63, 1880–1890.

    CAS  PubMed  Google Scholar 

  486. Seitz, A., Gourevitch, D., Zhang, X.M., et al. (2005) Sense and antisense transcripts of the apolipoprotein E gene in normal and APOE knockout mice, their expression after spinal cord injury and corresponding human transcripts. Hum. Mol. Genet., 14, 2661–2670.

    CAS  PubMed  Google Scholar 

  487. Corbo, R.M., Scacchi, R. (1999) Apolipoprotein E (APOE) allele distribution in the world: is APOE*4 a “thrifty” allele? Ann. Hum. Genet., 63, 301–310.

    CAS  PubMed  Google Scholar 

  488. Siest, G., Pillot, T., Regis-Bailly, A., Leininger-Muller, B., et al. (1995) Apolipoprotein E: an important gene and protein to follow in laboratory medicine. Clin. Chem., 41, 1060–1086.

    Google Scholar 

  489. Seet, W.T., Mary Anne, T.J., Yen, T.S. (2004) Apolipoprotein E genotyping in the Malay, Chinese and Indian ethnic groups in Malaysa–a study on the distribution of the different apoE alleles and genotypes. Clin. Chim. Acta, 340, 201–205.

    PubMed  Google Scholar 

  490. Laskowitz, D.T., Roses, A.D. (1998) Apolipoprotein E: an expanding role in the neurobiology of disease. Alzheimer Rep., 1, 5–12.

    Google Scholar 

  491. Fan, D., Li, Q., Korando, L., Jerome, W.G., Wang, J. (2004) A monomeric human apolipoprotein E carboxyl-terminal domain. Biochemistry, 43, 5055–5064.

    CAS  PubMed  Google Scholar 

  492. Gueguen, R., Visvikis, S., Steinmetz, A., Siest, G., Boerwinkle, E. (1989) An analysis of genotype effect and their interactions by using the apolipoprotein E polymorphism and longitudinal data. Am. J. Hum. Genet., 45, 793–802.

    CAS  PubMed  Google Scholar 

  493. Fumeron, F., Rigaud, D., Bertiere, M.C., Bardon, S., Dely, C., Apfelbaum, M. (1988) Association of apolipoprotein e4 allele with hypertriglyceridemia in obesity. Clin. Genet., 34, 258–264.

    CAS  PubMed  Google Scholar 

  494. Schaefer, E.J., Gregg, R.E., Ghiselli, G., et al. (1986) Familial apolipoprotein E deficiency. J. Clin. Invest., 78, 1206–1219.

    CAS  PubMed  Google Scholar 

  495. Chappell, D.A. (1989) High receptor binding affinity of lipoproteins in atypical dysbetalipoproteinemia (type III hyperlipoproteinemia). J. Clin. Invest., 84, 1906–1915.

    CAS  Google Scholar 

  496. Blennow, K., Hesse, C., Fredman, P. (1994) Cerebrospinal fluid apolipoprotein E is reduced in Alzheimer's disease. Neuroreport, 5, 2534–2536.

    CAS  PubMed  Google Scholar 

  497. Sullivan, P.M., Mace, B.E., Maeda, N., Schmechel, D.E. (2004) Marked regional differences of brain human apolipoprotein E expression in targeted replacement mice. Neuroscience, 124, 725–733.

    CAS  PubMed  Google Scholar 

  498. Ji, Y., Gong, Y., Gan, W., Beach, T., Holtzman, D.M., Wisniewski, T. (2003) Apolipoprotein E isoform-specific regulation of dendritic spine morphology in apolipoprotein E mice and Alzheimer's disease patients. Neuroscience, 122, 305–315.

    CAS  PubMed  Google Scholar 

  499. Harris, F.M., Tesseur, I., Brench, W.J., et al. (2004) Astroglial regulation of apolipoprotein E expression in neuronal cells. Implications for Alzheimer's disease. J. Biol. Chem., 279, 3862–3868.

    CAS  PubMed  Google Scholar 

  500. Quinn, C.M., Kagedal, K., Terman, A., et al. (2004) Induction of fibroblast apolipoprotein E expression during apoptosis, starvation-induced growth arrest and mitosis. Biochem. J., 378, 753–761.

    CAS  PubMed  Google Scholar 

  501. Strittmatter, W.J., Saunders, A.M., Schmechel, D., et al. (1993) Apolipoprotein E: high-avid-ity binding to beta-amyloid and increased frequency of type 4 allelein late-onset familial Alzheimer disease. Proc. Natl. Acad. Sci. U. S. A., 90, 1977–1981.

    CAS  PubMed  Google Scholar 

  502. Saunders, A.M., Schmader, K., Breitner, J.C.S., et al. (1993) Apolipoprotein E epsilon-4 allele distributions in late-onset Alzheimer's disease and in other amyloid-forming diseases. Lancet, 342, 710–711.

    CAS  PubMed  Google Scholar 

  503. Saunders, A.M., Strittmatter, W.J., Schamechel, D., et al. (1993) Association of apolipoprotein E allele E4 with late-onset familial and sporadic Alzheimer's disease. Neurology, 43, 1467–1472.

    CAS  PubMed  Google Scholar 

  504. Corder, E.H., Saunders, A.M., Strittmatter, W.J., et al. (1993) Gene dosage of apolipoprotein E type 4 allele and risk of Alzheimer's disease in late onset families. Science, 261, 921–923.

    CAS  PubMed  Google Scholar 

  505. Beyer, K., Lao, J.I., Alvarez, X.A., Cacabelos, R. (1996) Different implications of APOE E4 in Alzheimer's disease and vascular dementia in the Spanish population. Alzheimer Res., 2, 215–220.

    Google Scholar 

  506. Beyer, K., Lao, J.I., Cacabelos, R. (1996) Molecular genetics and genotyping in Alzheimer's disease. Ann. Psychiatry, 6, 173–187.

    Google Scholar 

  507. Daw, E.W., Payami, H., Nemens, E.J., et al. (2000) The number of trait loci in late-onset Alzheimer disease [erratum in Am. J. Hum. Genet., 2000, 66, 1728]. Am. J. Hum. Genet., 66, 196–204.

    CAS  PubMed  Google Scholar 

  508. Perry, R.T., Collins, J.S., Harrell, L.E., et al. (2001) Investigation of association of 13 polymorphisms in eight genes in southeastern African American Alzheimer disease patients as compared to aged-matched controls. Am. J. Med. Genet., 105, 332–342.

    CAS  PubMed  Google Scholar 

  509. Corder, E.H., Saunders, A.M., Risch, N.J., et al. (1994) Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat. Genet., 7, 180–184.

    CAS  PubMed  Google Scholar 

  510. Schachter, F., Faure-Delanef, L., Guenot, F., et al. (1994) Genetic association with human longevity at the APOE and ACE loci. Nat. Genet., 6, 29–32.

    CAS  PubMed  Google Scholar 

  511. Borgaonkar, D.S., Schmidt, L.C., Martin, S.E., et al. (1993) Linkage of late-onset Alzheimer's disease with apolipoprotein E type 4 on chromosome 19. Lancet, 342, 625.

    CAS  PubMed  Google Scholar 

  512. Li, Y.J., Scott, W.K., Hedges, D.J., et al. (2002) Age at onset in two common neurodegenerative diseases is genetically controlled. Am. J. Hum. Genet., 70, 985–993.

    CAS  PubMed  Google Scholar 

  513. Bray, N.J., Jehu, L., Moskvina, V., et al. (2004) Allelic expression of APOE in human brain: effects of epsilon status and promoter haplotypes. Hum. Mol. Genet., 13, 2885–2892.

    CAS  PubMed  Google Scholar 

  514. Brecht, W.J., Harris, F.M., Chang, S., et al. (2004) Neuron-specific apolipoprotein e4 proteolysis is associated with increased tau phosphorylation in brains of transgenic mice. J. Neurosci., 24, 2527–2534.

    CAS  Google Scholar 

  515. Glockner, F., Ohn, T.G. (2003) Hippocampal apolipoprotein D level depends on Braak stage and APOE genotype. Neuroscience, 122, 103–110.

    CAS  Google Scholar 

  516. Strittmatter, W.J., Roses, A.D. (1995) Apolipoprotein E and Alzheimer disease. Proc. Natl. Acad. Sci. U. S. A., 92, 4724–4727.

    Google Scholar 

  517. Ledesma, M.D., Moreno, F.J., Pérez, M.M., Avila, J. (1996) Binding of apolipoprotein E3 to tau protein: effects on tau glycation, tau phosphorylation and tau-microtubule binding in vitro. Alzheimer Res., 2, 85–88.

    CAS  Google Scholar 

  518. Olichney, J.M., Hansen, L.A., Galasko, D., et al. (1996) The apolipoprotein E epsylon-4 allele is associated with increased neuritic plaques and cerebral amyloid angiopathy in Alzheimer's disease and Lewy body variant. Neurology, 47, 190–196.

    CAS  PubMed  Google Scholar 

  519. Polvikoski, T., Sulkava, R., Haltia, M., et al. (1995) Apolipoprotein E, dementia, and cortical deposition of beta-amyloid protein. N. Engl. J. Med., 333, 1242–1247.

    CAS  PubMed  Google Scholar 

  520. Lambert, L., Mann, D., Goumidi, L., et al. (2001) Effects of the APOE promoter polymorphisms on cerebral amyloid peptide deposition in Alzheimer's disease. Lancet, 357, 608–609.

    CAS  PubMed  Google Scholar 

  521. O'Donnell, H.C., Rosand, J., Knudsen, K.A., et al. (2000) Apolipoprotein E genotype and the risk of recurrent lobar intracerebral hemorrhage. N. Engl. J. Med., 342, 240–245.

    PubMed  Google Scholar 

  522. Nicoll, J.A.R., Roberts, G.W., Graham, D.I. (1995) Apolipoprotein E epsilon-4 allele is associated with deposition of amyloid beta-protein following head injury. Nat. Med., 1, 135–137.

    CAS  Google Scholar 

  523. Reiman, E.M., Caselli, R.J., Yun, L.S., et al. (1996) Preclinical evidence of Alzheimer's disease in persons homozygous for the epsilon-4 allele for apolipoprotein E. N. Engl. J. Med., 334, 752–758.

    CAS  PubMed  Google Scholar 

  524. Reiman, E.M., Casselli, R.J., Chen, K., et al. (2001) Declining brain activity in cognitively normal apolipoprotein E epsilon-4 heterozygotes: a foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer's disease. Proc. Natl. Acad. Sci. U. S. A., 98, 3334–3339.

    CAS  PubMed  Google Scholar 

  525. Reiman, E.M., Chen, K., Alexander, G.E., et al. (2004) Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer's dementia. Proc. Natl. Acad. Sci. U. S. A., 101, 284–289.

    CAS  PubMed  Google Scholar 

  526. Dubelaar, E.J., Verwer, R.W., Hofman, M.A., Van Heerikhuize, J.J., Ravid, R., Swaab, D.E. (2004) APOE epsilon4 genotype is accompanied by lower metabolic activity in nucleus basalis of Meynert neurons in Alzheimer patients and controls as indicated by the size of the Golgi apparatus. J. Neuropathol. Exp. Neurol., 63, 159–169.

    CAS  PubMed  Google Scholar 

  527. Yamaguchi, H., Sugihara, S., Ogawa, A., Oshima, N., Ihara, Y. (2001) Alzheimer beta amyloid deposition enhanced by APOE epsilon 4 gene precedes neurofibrillary pathology in the frontal association cortex of non-demented senior subjects. J. Neuropathol. Exp. Neurol., 60, 731–739.

    CAS  PubMed  Google Scholar 

  528. Irizarry, M.C., Deng, A., Lleo, A., et al. (2004) Apolipoprotein E modulates gamma-secre-tase cleavage of the amyloid precursor protein. J. Neurochem., 90, 1132–1143.

    CAS  PubMed  Google Scholar 

  529. Lesuisse, C., Xu, G., Anderson, J., et al. (2001) Hyper-expression of human apolipoprotein E4 in astroglia and neurons does not enhance amyloid deposition in transgenic mice. Hum. Mol. Genet., 10, 2525–2537.

    CAS  PubMed  Google Scholar 

  530. Bennet, C., Crawford, F., Osborne, A., et al. (1995) Evidence that the APOE locus influences rate of disease progression in late onset familial Alzheimer's disease but is not causative. Am. J. Med. Genet., 60, 1–6.

    Google Scholar 

  531. Poirier, J., Delisle, M.-C., Quirion, R., et al. (1995) Apolipoprotein E4 allele as a predictor of cholinergic deficits treatment outcome in Alzheimer disease. Proc. Natl. Acad. Sci. U. S. A., 92, 12260–12264.

    CAS  Google Scholar 

  532. Poirier, J. (1999) Apolipoprotein E4, cholinergic integrity and the pharmacogenetics of Alzheimer's disease. J. Psychiatry Neurosci., 24, 147–153.

    CAS  PubMed  Google Scholar 

  533. Almkvist, O., Jelic, V., Amberla, K., Hellstrom-Lindahl, E., Meurling, L., Nordberg, A. (2001) Responder characteristics to a single oral dose of cholinesterase inhibitor: a double-blind placebo-controlled study with tacrine in Alzheimer patients. Dement. Geriatr. Cogn. Disord., 12, 22–32.

    CAS  PubMed  Google Scholar 

  534. Sjögren, M., Hesse, C., Basun, H., et al. (2001) Tacrine and rate of progression in Alzheimer's disease–relation to APOE allele genotype. J. Neural Transm., 108, 451–458.

    PubMed  Google Scholar 

  535. Borroni, B., Colciaghi, F., Pastorino, L., et al. (2002) APOE genotype influences the biological effects of donepezil on APP metabolism in Alzheimer disease: evidence from a peripheral model. Eur. Neuropsychopharmacol., 12, 195–200.

    CAS  PubMed  Google Scholar 

  536. Aerssens, J., Raeymaekers, P., Lilienfeld, S., Geerts, H., Konings, F., Parys, W. (2001) APOE genotype: no influence on galantamine treatment efficacy nor on rate of decline in Alzheimer's disease. Dement. Geriatr. Cogn. Disord., 2, 69–77.

    Google Scholar 

  537. Babic, T., Lakusic, D.M., Sertic, J., Petrovecki, M., Stavljenic-Rukavina, A. (2004) APOE genotyping and response to galanthamine in Alzheimer's disease-a real life retrospective study. Coll. Antropol., 28, 199–204.

    CAS  PubMed  Google Scholar 

  538. MacGowan, S.H., Wilcock, G.K., Scott, M. (1998) Effect of gender and apolipoprotein E genotype on response to anticholinesterase therapy in Alzheimer's disease. Int. J. Geriatr. Psychiatry, 13, 625–630.

    CAS  PubMed  Google Scholar 

  539. Rigaud, A.S., Traykov, L., Caputo, L., et al. (2000) The apolipoprotein E epsilon 4 allele and the response to tacrine therapy in Alzheimer's disease. Eur. J. Neurol., 7, 255–258.

    CAS  PubMed  Google Scholar 

  540. Rigaud, A.S., Traykov, L., Latour, F., et al. (2002) Presence of absence of least one epsilon 4 allele and gender are not predictive for the response to donepezil treatment in Alzheimer's disease. Pharmacogenetics, 12, 415–420.

    CAS  PubMed  Google Scholar 

  541. Petersen, R.C., Thomas, R.G., Grundman, M., et al. (2005) Vitamin E and donepezil for the treatment of mild cognitive impairment. N. Engl. J. Med., 352, 2379–2388.

    CAS  Google Scholar 

  542. Bizarro, A., Marra, C., Acciarri, A., et al. (2005) Apolipoprotein E epsilon-4 allele differentiates the clinical response to donepezil in Alzheimer's disease. Dement. Geriatr. Cogn. Disord., 20, 254–261.

    Google Scholar 

  543. Alvarez, X.A., Mouzo, R., Pichel, V., et al. (1999) Double-blind placebo-controlled study with citicoline in APOE genotyped Alzheimer's disease patients. Effects on cognitive performance, brain bioelectrical activity, and cerebral perfusion. Meth. Find. Exp. Clin. Pharmacol., 21, 633–644.

    CAS  Google Scholar 

  544. Alvarez, X.A., Pichel, V., Pérez, P., et al. (2000) Double-blind, randomized, placebo-control-led pilot study with anapsos in senile dementia: effects on cognition, brain bioelectrical activity and cerebral hemodynamics. Meth. Find. Exp. Clin. Pharmacol., 22, 585–594.

    CAS  Google Scholar 

  545. Saunders, A.M., Trowers, M.K., Shimkets, R.A., et al. (2000) The role of apolipoprotein E in Alzheimer's disease: pharmacogenomic target selection. Biochem. Biophys. Acta, 1502, 85–94.

    CAS  Google Scholar 

  546. Rebeck, G.W., LaDu, M.J., Estus, S., Bu, G., Weeber, E.J. (2006) The generation and function of soluble apoE receptors in the CNS. Mol. Neuroder., 1:15 doi:10.1186/1750-1326-1-15.

    Google Scholar 

  547. Ulery, P.G., Beers, J., Mikhailenko, I., et al. (2000) Modulation of beta-amyloid precursor protein processing by the low density lipoprotein receptor-related protein (LRP). Evidence that LRP contributes to the pathogenesis of Alzheimer's disease. J. Biol. Chem., 275, 7410–7415.

    CAS  PubMed  Google Scholar 

  548. Pietrzik, C.U., Busse, T., Merriam, D.E., Weggen, S., Koo, E.H. (2002) The cytoplasmic domain of the LDL receptor-related protein regulates multiple steps in APP processing. EMBO J., 21, 5691–5700.

    CAS  PubMed  Google Scholar 

  549. Cam, J.A., Bu, G. (2006) Modulation of ?-amyloid precursor protein trafficking and processing by the low density lipoprotein receptor family. Mol. Neuroder., 1:8 doi:10.1186/1750-1326-1-8.

    Google Scholar 

  550. Andersen, O.M., Reiche, J., Schmidt, V., et al. (2005) Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc. Natl. Acad. Sci. U. S. A., 102, 13461–13466.

    CAS  PubMed  Google Scholar 

  551. Andersen, O.M., Schmidt, V., Spoelgen, R., et al. (2006) Molecular dissection of the interaction between amyloid precursor protein and its neuronal trafficking receptor SorLA/LR11. Biochemistry, 45, 2618–2628.

    CAS  PubMed  Google Scholar 

  552. Spoelgen, R., von Arnim, C.A., Thomas, A.V., et al. (2006) Interaction of the cytosolic domains of sorLA/LR11 with the amyloid precursor protein (APP) and beta-secretase beta-site APP-cleaving enzyme. J. Neurosci., 26, 418–428.

    CAS  Google Scholar 

  553. Lusis, A.J. (2000) Atherosclerosis. Nature, 407, 233–241.

    CAS  PubMed  Google Scholar 

  554. Engelborghs, S., Dermaut, B., Goeman, J., et al. (2003) Prospective Belgian study of neurodegenerative and vascular dementia: APOE genotype effects. J. Neurol. Neurosurg. Psychiatry, 74, 1148–1151.

    CAS  PubMed  Google Scholar 

  555. Tian, J., Shi, J., Bailey, K., Lendon, C.L., Pickering-Brown, S.M., Mann, D.M.A. (2004) Association between apolipoprotein E E4 allele and arteriosclerosis, cerebral amyloid angiopathy, and cerebral white matter damage in Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry, 75, 696–699.

    CAS  Google Scholar 

  556. Raffai, R.L., Weisgraber, K.H. (2003) Cholesterol: from heart attacks to Alzheimer's disease. J. Lipid Res., 44, 1423–1430.

    CAS  PubMed  Google Scholar 

  557. Maxfield, F.R., Wüstner, D. (2002) Intracellular cholesterol transport. J. Clin. Invest., 110, 891–898.

    CAS  Google Scholar 

  558. Puglielli, L., Tanzi, R.E., Kovacs, D.M. (2003) Alzheimer's disease: the cholesterol connection. Nat. Neurosci., 6, 345–351.

    CAS  PubMed  Google Scholar 

  559. Bodovitz, S., Klein, W.L. (1996) Cholesterol modulates alpha-secretase cleavage of amyloid precursor protein. J. Biol. Chem., 271, 4436–4440.

    CAS  PubMed  Google Scholar 

  560. Frears, E.R., Stephens, D.J., Walters, C.E., Davies, H., Austen, B.M. (1999) The role of cholesterol in the biosynthesis of beta-amyloid. Neuroreport, 10, 1699–1705.

    CAS  Google Scholar 

  561. Simons, M., Keller, P., De Strooper, B., Beyreuther, K., Dotti, C.G., Simons, K. (1998) Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc. Natl. Acad. Sci. U. S. A., 95, 6460–6464.

    CAS  PubMed  Google Scholar 

  562. Runz, H., Rietdorf, J., Tomic, I., et al. (2002) Inhibition of intracellular cholesterol transport alters presenilin localization and amyloid precursor protein processing in neuronal cells. J. Neurosci., 22, 1679–1689.

    CAS  PubMed  Google Scholar 

  563. Wahrle, S., Das, P., Nyborg, A.C., et al. (2002) Cholesterol-dependent gamma-secretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol. Dis., 9, 11–23.

    CAS  PubMed  Google Scholar 

  564. Refolo, L.M., Malester, B., LaFrancois, J., et al. (2000) Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model. Neurobiol. Dis., 7, 321–331.

    CAS  PubMed  Google Scholar 

  565. Levin-Allerhand, J.A., Lominska, C.E., Smith, J.D. (2002) Increased amyloid-beta levels in APPSWE transgenic mice treated chronically with a physiological high-fat high-cholesterol diet. J. Nutr. Health Aging, 6, 315–319.

    CAS  Google Scholar 

  566. Austen, B., Christodoulou, G., Terry, J.E. (2002) Relation between cholesterol levels, statins and Alzheimer's disease in the human population. J. Nutr. Health Aging, 6, 377–382.

    CAS  PubMed  Google Scholar 

  567. Ishii, K., Tokuda, T., Matsushima, T., et al. (2003) Pravastatin at 10 mg/day does not decrease plasma levels of either amyloid-beta (Abeta)40 or Abeta42 in humans. Neurosci. Lett., 350, 161–164.

    CAS  Google Scholar 

  568. Tokuda, T., Tamaoka, A., Matsuno, S., et al. (2001) Plasma levels of amyloid-beta proteins do not differ between subjects taking statins and those not taking statins. Ann. Neurol., 49, 546–547.

    CAS  PubMed  Google Scholar 

  569. Bi, X., Baudry, M., Liu, J., et al. (2004) Inhibition of geranylgeranylation mediates the effects of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors on microglia. J. Biol. Chem., 279, 48238–48245.

    CAS  PubMed  Google Scholar 

  570. Papolla, M.A., Bryant-Thomas, T.K., Herbert, D., et al. (2003) Mild hypercholesterolemia is an early risk factor for the development of Alzheimer amyloid pathology. Neurology, 61, 199–205.

    Google Scholar 

  571. Kuo, Y.M., Emmerling, M.R., Bisgaier, C.L., et al. (1998) Elevated low-density lipoprotein in Alzheimer's disease correlates with brain Abeta 1–42 levels. Biochem. Biophys. Res. Commun., 252, 711–715.

    CAS  PubMed  Google Scholar 

  572. Libeu, C.P., Lund-Katz, S., Phillips, M.C., et al. (2001) New insights into the heparin sulphate proteoglycan-binding activity of apolipoprotein E. J. Biol. Chem., 276, 39138–39144.

    CAS  PubMed  Google Scholar 

  573. Borroni, B., Archetti, S., Agosti, C., et al. (2004) Intronic CYP46 polymorphism along with APOE genotype in sporadic Alzheimer's disease: from risk factors to disease modulators. Neurobiol. Aging, 25, 747–751.

    CAS  PubMed  Google Scholar 

  574. Wang, B., Zhang, C., Zheng, W., et al. (2004) Association between a T/C polymorphism in intron 2 of cholesterol 24S-hydroxylase gene and Alzheimer's disease in Chinese. Neurosci. Lett., 14, 104–107.

    CAS  Google Scholar 

  575. Papassotiropoulos, A., Streffer, J.R., Tsolaki, M., et al. (2003) Increased brain beta-amyloid load, phosphorylated tau, and risk of Alzheimer's disease associated with an intronic CYP46 polymorphism. Arch. Neurol., 60, 29–35.

    PubMed  Google Scholar 

  576. Johansson, A., Katzov, H., Zetterberg, H., et al. (2004) Variants of CYP46A1 may interact with age and APOE to influence CSF Aβ42 levels in Alzheimer's disease. Hum. Genet., 114, 581–587.

    CAS  PubMed  Google Scholar 

  577. Hirsch-Reinshagen, V., Zhou, S., Burgess, B.L., et al. (2004) Deficiency of ABCA1 impairs apolipoprotein A metabolism in brain. J. Biol. Chem., 279, 41197–41207.

    CAS  PubMed  Google Scholar 

  578. Katzov, H., Chalmers, K., Palmgren, J., et al. (2004) Genetic variants of ABCA1 modify Alzheimer disease risk and quantitative traits related to beta-amyloid metabolism. Hum. Mutat., 23, 358–367.

    CAS  Google Scholar 

  579. Frankfort, S.V., Dooderman, V.D., Bakker, R., et al. (2006) ABCA1 genotypes and haplotypes in patients with dementia and age-matched non-demented control patients. Mol. Neurodegener., 1, 13.

    PubMed  Google Scholar 

  580. Mace, S., Cousin., E, Ricard, S., et al. (2005) ABCA2 is a strong genetic risk factors for early-onset Alzheimer's disease. Neurobiol. Dis., 18, 119–125.

    CAS  PubMed  Google Scholar 

  581. Wollmer, M.A., Kapati, E., Hersberger, M., et al. (2006) Ethnicity-dependent genetic association of ABCA2 with sporadic Alzheimer's disease. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 141, 534–536.

    Google Scholar 

  582. Dean, M. (2005) The genetics of ATP-binding cassette transporters. Methods Enzymol., 400, 409–429.

    CAS  PubMed  Google Scholar 

  583. Wahrle, S.E., Jiang, H., Parsadanian, M., et al. (2004) ABCA1 is required for normal central nervous system APOE levels and for lipidation of astrocyte-secreted apoE. J. Biol. Chem., 279, 40987–40993.

    CAS  PubMed  Google Scholar 

  584. Hirsch-Reinshagen, V., Maia, L.F., Burgess, B.L., et al. (2005) The absence of ABCA1 decreases soluble APOE levels but does not diminish amyloid deposition in two murine models of Alzheimer's disease. J. Biol. Chem., 280, 43243–43256.

    CAS  PubMed  Google Scholar 

  585. Koldamova, R., Staufenbiel, M., Lefterov, I. (2005) Lack of ABCA1 considerably decreases brain APOE level and increases amyloid deposition in APPP23 mice. J. Biol. Chem., 280, 43224–43235.

    CAS  Google Scholar 

  586. Wahrle, S.E., Jiang, H., Parsadanian, M., et al. (2005) Deletion of Abca1 increases Aβ deposition in the PDAPP transgenic mouse model of Alzheimer's disease. J. Biol. Chem., 280, 43236–43242.

    CAS  PubMed  Google Scholar 

  587. Fukumoto, H., Deng, A., Irizarry, M.C., Fitzgerald, M.L., Rebeck, G.W. (2002) Induction of the cholesterol transport ABCA1 in central nervous system cells by liver X receptor agonists increases secreted Aβ levels. J. Biol. Chem., 277, 48508–48513.

    CAS  PubMed  Google Scholar 

  588. Kim, W.S., Rahmant, A.S., Kamili, A., et al. (2006) Role of ABCG1 and ABCA1 in regulation of neuronal cholesterol efflux to apolipoprotein-E discs and suppression of amyloid-βpeptide generation. J. Biol. Chem., 282, 2851–2861.

    Google Scholar 

  589. Heeren, J., Grewals, T., Laatsch, A., et al. (2004) Impaired recycling of apolipoprotein E4 is associated with intracellular cholesterol accumulation. J. Biol. Chem., 279, 55483–55492.

    CAS  PubMed  Google Scholar 

  590. Vetrivel, K.S., Cheng, H., Lin, W., et al. (2004) Association of gamma-secretase with lipid rafts in post-Golgi and endosome membranes. J. Biol. Chem., 279, 44945–44954.

    CAS  PubMed  Google Scholar 

  591. Fewlass, D.C., Noboa, K., Pi-Sunyer, F.X., et al. (2004) Obesity-related leptin regulates Alzheimer's Aβ. FASEB J., 18, 1870–1878.

    CAS  PubMed  Google Scholar 

  592. Mann, K.M., Thorngate, F.E., Katoh-Fukui, Y., et al. (2004) Independent effects of APOE on cholesterol metabolism and brain Aβ levels in an Alzheimer disease mouse model. Hum. Mol. Genet., 13, 1959–1968.

    CAS  PubMed  Google Scholar 

  593. Mann, D.M., Iwatsubo, T., Pickering-Brown, S.M., Owen, F., Saido, T.C., Perry, R.H. (1997) Preferential deposition of amyloid beta protein (Abeta) in the form of Abeta40 in Alzheimer's disease associated with a gene dosage effect of the apolipoprotein E E4 allele. Neurosci. Lett., 221, 81–84.

    CAS  PubMed  Google Scholar 

  594. Morishima-Kawashima, M., Oshima, N., Ogata, H., et al. (2000) Effect of apolipoprotein E allele epsilon 4 on the initial phase of amyloid beta-protein accumulation in the human brain. Am. J. Pathol., 157, 2093–2099.

    CAS  Google Scholar 

  595. Knoblauch, H., Bauerfeind, A., Toliat, M.R., et al. (2004) Haplotypes and SNPs in 13 lipid-relevant genes explain most of the genetic variance in high-density lipoprotein and low-density lipoprotein cholesterol. Hum. Mol. Genet., 13, 993–1004.

    CAS  PubMed  Google Scholar 

  596. Isbir, T., Agachan, B., Yilmaz, H., et al. (2001) Apolipoprotein-E gene polymorphism and lipid profiles in Alzheimer's disease. Am. J. Alzheimer Dis. Other Demen., 16, 77–81.

    CAS  Google Scholar 

  597. Hagberg, J.M., Wilund, K.R., Ferrell, R.E. (2000) APOE gene and gene-environment effects on plasma lipoprotein-lipid levels. Physiol. Genomics, 4, 101–108.

    CAS  PubMed  Google Scholar 

  598. Poirier, J. (2005) Apolipoprotein E, cholesterol transport and synthesis in sporadic Alzheimer's disease. Neurobiol. Aging, 26, 355–361.

    CAS  PubMed  Google Scholar 

  599. Hoglund, K., Wiklund, O., Vanderstichele, H., Eikenberg, O., Vamechelen, E., Blennow, K. (2004) Plasma levels of beta-amyloid(1–40), beta-amyloid(1–42), and total beta-amyloid remain unaffected in adult patients with hypercholesterolemia after treatment with statins. Arch. Neurol., 61, 333–337.

    PubMed  Google Scholar 

  600. Heart Protection Study Collaborative Group. (2002) MRC/BHF Heart Protection study of cholesterol lowering with simvastatin in 20,506 high-risk individuals: a randomized placebo-controlled trial. Lancet, 360, 7–22.

    Google Scholar 

  601. Shepherd, J., Blauw, G.J., Murphy, M.B., et al. (2002) PROSPER Study Group. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomized controlled trial. Lancet, 360, 1623–1630.

    CAS  PubMed  Google Scholar 

  602. Athanasopoulos, T., Owen, J.S., Hassall, D.G., et al. (2000) Intramuscular injection of a plasmid vector expressing human apolipoprotein E limits progression of xanthoma and aortic atheroma in apoE-deficient mice. Hum. Mol. Genet., 9, 2545–2551.

    CAS  PubMed  Google Scholar 

  603. Harris, J.D., Graham, I.R., Schepelmann, S., et al. (2002) Acute regression of advanced and retardation of early aortic atheroma in immunocompetent apolipoprotein-E (apoE) deficient mice by administration of a second generation (E1-, E3-, polymerase-) adenovirus vector expressing human apoE. Hum. Mol. Genet., 11, 43–58.

    CAS  PubMed  Google Scholar 

  604. Rousseau, A., Michaud, A., Chauvet, M.T., Lenfant, M., Corvol, P. (1995) The hemoregulatory peptide N-acetyl-Ser-Asp-Lys-Pro is a natural and specific substrate of the N-terminal active site of human angiotensin-converting enzyme. J. Biol. Chem., 270, 3656–3661.

    CAS  PubMed  Google Scholar 

  605. Skidgel, R.A., Erdos, E.G. (1985) Novel activity of human angiotensin I converting enzyme: release of the NH2- and COOH-terminal tripeptides from the luteinizing hormone-releasing hormone. Proc. Natl. Acad. Sci. U. S. A., 82, 1025–1029.

    CAS  PubMed  Google Scholar 

  606. Sayed-Tabatabaei, F.A., Oostra, B.A., Isaacs, A., van Duijn, C.M., Witteman, J.C. (2006) ACE polymorphisms. Circ. Res., 98, 1123–1133.

    CAS  PubMed  Google Scholar 

  607. Katzov, H., Bennet, A.M., Kehoe, P., et al. (2004) A cladistic model of ACE sequence variation with implications for myocardial infarction, Alzheimer disease and obesity. Hum. Mol. Genet., 13, 2647–2657.

    CAS  PubMed  Google Scholar 

  608. Fleming, I. (2006) Signaling by the angiotensin-converting enzyme. Circ. Res., 98, 887–96.

    CAS  PubMed  Google Scholar 

  609. Alvarez, R., Alvarez, V., Lahoz, C.H., et al. (1999) Angiotensin converting enzyme and endothelial nitric oxide synthase DNA polymorphisms and late onset Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry, 67, 733–736.

    CAS  PubMed  Google Scholar 

  610. Kehoe, P.G., Russ, C., McIlroy, S., et al. (1999) Variation in DCP1, encoding ACE, is associated with susceptibility to Alzheimer disease. Nat. Genet., 21, 71–72.

    CAS  PubMed  Google Scholar 

  611. Narain, Y., Yip, A., Murphy, T., et al. (2000) The ACE gene and Alzheimer's disease susceptibility. J. Med. Genet., 37, 695–697.

    CAS  PubMed  Google Scholar 

  612. Yang, J.D., Feng, G., Zhang, J., et al. (2000) Association between angiotensin-converting enzyme gene and late onset Alzheimer's disease in Han Chinese. Neurosci. Lett., 295, 41–44.

    CAS  PubMed  Google Scholar 

  613. Isbir, T., Agachan, B., Yilmaz, H., Aydin, M., Kara, I., Eker, D., Eker, E. (2001) Interaction between apolipoprotein-E and angiotensin-converting enzyme genotype in Alzheimer disease. Am. J. Alzheim. Dis. Other Dem., 16, 205–210.

    CAS  Google Scholar 

  614. De Olano, M., Fernández-Novoa, L., Mesa, M.D., Corzo, L., Cacabelos, R. (2000) Different allelic frequency distribution in angiotensin-converting enzyme I/D polymorphism and angiotensinogen M235T polymorphism in dementia. In: Sixth International Stockholm/ Springfield Symposium Advanced Alzheimer Therapy, Stockholm, p. 202.

    Google Scholar 

  615. De Olano, M., Mesa, M.D., Fernández-Novoa, L., Corzo, L., Blanco, A., Cacabelos, R. (1999) Angiotensin-converting enzyme I/D polymorphism and angiotensinogen M235T polymorphism in cerebrovascular pathology. Proceedings First International Congress on Vascular Dementia, Monduzzi, Bologna, pp. 239–243.

    Google Scholar 

  616. Cheng, C.Y., Hong, C.J., Liu, H.C., Liu, T.Y., Tsai, S.J. (2002) Study of the association between Alzheimer's disease and angiotensin-converting enzyme gene polymorphism using DNA from lymphocytes. Eur. Neurol., 47, 26–29.

    CAS  PubMed  Google Scholar 

  617. Farrer, L.A., Sherbatich, T., Keryanov, S.A., et al. (2000) Association between angiotensin-converting enzyme and Alzheimer's disease. Arch. Neurol., 57, 210–214.

    CAS  PubMed  Google Scholar 

  618. Kehoe, P.G., Katzov, H., Feuk, L., et al. (2003) Haplotypes across ACE are associated with Alzheimer's disease. Hum. Mol. Genet., 12, 859–867.

    CAS  PubMed  Google Scholar 

  619. Lehmann, D.J., Cortina-Borja, M., Warden, D.R., et al. (2005) Large meta-analysis establishes that ACE insertion-deletion polymorphism as a marker of Alzheimer's disease. Am. J. Epidemiol., 162, 305–317.

    PubMed  Google Scholar 

  620. Elkins, J.S., Douglas, V.C., Johnston, S.C. (2004) Alzheimer disease risk and genetic variation in ACE: a meta-analysis. Neurology, 62, 363–368.

    CAS  PubMed  Google Scholar 

  621. Savaskan, E., Hock, C., Olivieri, G., et al. (2001) Cortical alterations of angiotensin converting enzyme, angiotensin II and AT1 receptor in Alzheimer's disease. Neurobiol. Aging, 22, 541–546.

    CAS  Google Scholar 

  622. Barnes, N.M., Cheng, C.H., Costall, B., Naylor, R.J., Williams, T.J., Wischik, C.M. (1991) Angiotensin converting enzyme density is increased in temporal cortex from patients with Alzheimer's disease. Eur. J. Pharmacol., 200, 289–292.

    CAS  PubMed  Google Scholar 

  623. Fernández-Novoa, L., Lombardi, V.R.M., Seoane, S., Etcheverría, I., Corzo, L., Cacabelos, R. (2003) The ACE gene in Alzheimer's disease. In: New trends in Alzheimer and Parkinson related disorders, Hanin, I., Fisher, A., Cacabelos, R. (eds.). Monduzzi, Bologna, pp. 123–126.

    Google Scholar 

  624. Tysoe, C., Galinsky, D., Robinson, D., et al. (1997) Analysis of alpha-1 antichymotrypsin, presenilin-1, angiotensin-converting enzyme, and methylenetetrahydrofolate reductase loci as candidates for dementia. Am. J. Med. Genet., 74, 207–212.

    CAS  PubMed  Google Scholar 

  625. Myllykangas, L., Polikoski, T., Sulkava, R., et al. (2000) Cardiovascular risk factors and Alzheimer's disease: a genetic association study in a popular aged 85 or over. Neurosci. Lett., 292, 195–198.

    CAS  PubMed  Google Scholar 

  626. Zuliani, G., Ble, A., Zanca, R., et al. (2001) Genetic polymorphisms in older subjects with vascular or Alzheimer's dementia. Acta Neurol. Scand., 103, 304–308.

    CAS  PubMed  Google Scholar 

  627. Chapman, J., Wang, N., Treves, T.A., Korczyn, A.D., Borstein, N.M. (1998) ACE, MTHFR, factor V Leiden, and APOE polymorphisms in patients with vascular and Alzheimer's dementia. Stroke, 29, 1401–1404.

    CAS  PubMed  Google Scholar 

  628. Seripa, D., Dal Forno, G., Matera, M.G., et al. (2003) Methylenetetrahydrofolate reductase and angiotensin converting enzyme gene polymorphisms in two genetically and diagnostically distinct cohorts of Alzheimer patients. Neurobiol. Aging, 24, 933–939.

    CAS  PubMed  Google Scholar 

  629. Monastero, R., Calsarella, R., Mannino, M., et al. (2002) Lack of association between angiotensin converting enzyme polymorphism and sporadic Alzheimer's disease. Neurosci. Lett., 335, 147–149.

    CAS  PubMed  Google Scholar 

  630. Carbonell, J., Allen, R., Kalsi, G., et al. (2003) Variation in the DCP1 gene, encoding the angiotensin converting enzyme ACE, is not associated with increased susceptibility to Alzheimer's disease. Psychiatr. Genet., 13, 47–50.

    CAS  PubMed  Google Scholar 

  631. Buss, S., Muller-Thomsen, T., Hock, C., et al. (2002) No association between DCP1 genotype and late-onset Alzheimer disease. Am. J. Med. Genet., 114, 440–445.

    PubMed  Google Scholar 

  632. Scacchi, R., De Bernardini, L., Mantuano, E., et al. (1998) DNA polymorphisms of apolipoprotein B and angiotensin I-converting enzyme genes and relationships with lipid levels in Italian patients with vascular dementia or Alzheimer's disease. Dement. Geriatr. Cogn. Disord., 9, 186–190.

    CAS  PubMed  Google Scholar 

  633. Hu, J., Miyatake, F., Aizu, Y et al. (1999) Angiotensin-converting enzyme genotype is associated with Alzheimer disease in the Japanese population. Neurosci. Lett., 277, 65–67.

    CAS  PubMed  Google Scholar 

  634. Hu, J., Igarashi, A., Kamata, M., Nakagawa, H. (2001) Angiotensin-converting enzyme degrades Alzheimer amyloid β-peptide (Aβ); retards Aβ aggregation, deposition, fibril formation; and inhibits cytotoxicity. J. Biol. Chem., 276, 47863–47868.

    CAS  Google Scholar 

  635. Yang, J.D., Feng, G., Zhang, J., et al. (2000) Association between angiotensin-converting enzyme gene and late onset Alzheimer's disease in Han Chinese. Neurosci. Lett., 295, 41–44.

    CAS  PubMed  Google Scholar 

  636. Wu, C., Zhou, D., Guan, Z., Fan, J., Qio, Y. (2002) The association between angiotensin I converting enzyme gene polymorphism and Chinese late onset Alzheimer disease. Zhonghua Yi Xue Yi Chuan Xue Za Zhi, 19, 401–404.

    CAS  Google Scholar 

  637. Lendon, C.L., Thaker, U., Harris, J.M., et al. (2002) The angiotensin 1-converting enzyme insertion (I)/deletion (D) polymorphism does not influence the extent of amyloid or tau pathology in patients with sporadic Alzheimer's disease. Neurosci. Lett., 328, 314–318.

    CAS  PubMed  Google Scholar 

  638. Purandare, N., Oude Voshaar, R.C., Davidson, Y., et al. (2006) Deletion/insertion polymorphism of the angiotensin-converting enzyme gene and white matter hyperintensities in dementia: a pilot study. J. Am. Geriatr. Soc., 54, 1395–1400.

    PubMed  Google Scholar 

  639. Wang, H.K., Fung, H.C., Hsu, W.C., et al. (2006) Apolipoprotein E, angiotensin-converting enzyme and kallikrein gene polymorphisms and the risk of Alzheimer's disease and vascular dementia. J. Neural Transm., 113, 1499–1509.

    CAS  PubMed  Google Scholar 

  640. Kolsch, H., Jessen, F., Freymann, N., et al. (2005) ACE I/D polymorphism is a risk factor of Alzheimer's disease but not of vascular dementia. Neurosci. Lett., 377, 37–39.

    CAS  PubMed  Google Scholar 

  641. Oba, R., Igarashi, A., Kamata, M., Nagata, K., Takano, S., Nakagawa, H. (2005) The N-terminal active centre of human angiotensin-converting enzyme degrades Alzheimer amyloid beta-peptide. Eur. J. Neurosci., 21, 733–740.

    PubMed  Google Scholar 

  642. Eckman, E.A., Adams, S.K., Troendle, F.J., et al. (2006) Regulation of steady-state beta-amyloid levels in the brain by neprilysin and endothelin-converting enzyme but not angi-otensin-converting enzyme. J. Biol. Chem., 281, 30471–30478.

    CAS  Google Scholar 

  643. Hemming, M.L., Selkoe, D.J. (2005) Amyloid ?-protein is degraded by cellular angiotensin-converting enzyme (ACE) and elevated by an ACE inhibitor. J. Biol. Chem., 280, 37644–37650.

    CAS  PubMed  Google Scholar 

  644. Tian, J., Shi, J., Bailey, K., et al. (2004) A polymorphism in the angiotensin 1-converting enzyme gene is associated with damage to cerebral cortical white matter in Alzheimer's disease. Neurosci. Lett., 354, 103–106.

    CAS  PubMed  Google Scholar 

  645. Cacabelos, R., Rodríguez, B., Carrera, C., Beber, K., Lao, J.I., Sellers, M.A. (1996) APOE-Related dementia symptoms: frequency and progression. Ann. Psychiatry, 6, 189–205.

    Google Scholar 

  646. Cacabelos, R., Rodríguez, B., Carrera, C., et al. (1996) APOE- Related frequency of cognitive and noncognitive symptoms in dementia. Meth. Find. Exp. Clin. Pharmacol., 18, 693–706.

    CAS  Google Scholar 

  647. Cacabelos, R., Rodríguez, B., Carrera, C., Beber, K., Lao, J.I., Sellers, M.A. (1997) Behavioral changes associated with different apolipoprotein E genotypes in dementia. Alzheimer Dis. Assoc. Dis., II(suppl. 4), S27–S37.

    Google Scholar 

  648. Baghai, T.C., Binder, E.B., Schule, C., et al. (2006) Polymorphisms in the angiotensin-converting enzyme gene are associated with unipolar depression, ACE activity and hypercortisolism. Mol. Psychiatry, 11, 1003–1015.

    CAS  PubMed  Google Scholar 

  649. Bellivier, F., Laplanche, J.L., Schurhoff, F., et al. (1997) Apolipoprotein E gene polymorphism in early and late onset bipolar patients. Neurosci. Lett., 233, 45–48.

    CAS  PubMed  Google Scholar 

  650. Olsson, M., Annerbrink, K., Westberg, L., et al. (2004) Angiotensin-related genes in patients with panic disorder. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 127, 81–84.

    Google Scholar 

  651. McLachlan, C.S., Yi Xing Soh, C. (2005) Differences in anxiety-related behaviour between apolipoprotein E-deficient C57BL/6 and wild type C57BL/6 mice. Physiol. Res., 54, 701–704.

    CAS  PubMed  Google Scholar 

  652. Nebes, R.D., Vora, I.J., Meltzer, C.C., et al. (2001) Relationship of deep white matter hyper-intensities and apolipoprotein E genotype to depressive symptoms in older adults without clinical depression. Am. J. Psychiatry, 158, 878–884.

    CAS  PubMed  Google Scholar 

  653. Naismith, S., Hickie, I., Ward, P.B., et al. (2002) Caudate nucleus volumes and genetic determinants of homocysteine metabolism in the prediction of psychomotor speed in older persons with depression. Am. J. Psychiatry, 159, 2096–2098.

    PubMed  Google Scholar 

  654. O'Brien, J.T., Lloyd, A., McKeith, I., Gholkar, A., Ferrier, N. (2004) A longitudinal study of hippocampal volume, cortisol levels, and cognition in older depressed subjects. Am. J. Psychiatry, 161, 2081–2090.

    PubMed  Google Scholar 

  655. Hickie, I., Naismith, S., Ward, P.B., et al. (2005) Reduced hippocapal volumes and memory loss in patients with early- and late-onset depression. Br. J. Psychiatry, 186, 197–202.

    PubMed  Google Scholar 

  656. Kim, J.M., Stewart, R., Shin, I.S., Yoon, J.S. (2004) Vascular/risk and late-life depression in a Korean community population. Br. J. Psychiatry, 185, 102–107.

    PubMed  Google Scholar 

  657. Weiner, I., Tarrasch, R., Hasson, O., et al. (1994) The effects of chronic administration of ceronapril on the partial reinforcement extinction effect and latent inhibition in rats. Behav. Pharmacol., 5, 306–314.

    CAS  PubMed  Google Scholar 

  658. Srinivasan, J., Suresh, B., Ramanathan, M. (2003) Differential anxiolytic effect of enalapril and losartan in normotensive and renal hypertensive rats. Physiol. Behav., 78, 565–591.

    Google Scholar 

  659. Costall, B., Domeney, A.M., Gerrard, P.A., et al. (1990) Effects of captopril and SQ29,852 on anxiety-related behaviours in rodent and marmoset. Pharmacol. Biochem. Behav., 36, 13–20.

    CAS  PubMed  Google Scholar 

  660. Philips, K.A., Van Bebber, S.L. (2005) Measuring the value of pharmacogenomics. Nature Rev. Drug Disc., 4, 500–509.

    Google Scholar 

  661. Veenstra, D.L., Higashi, M.K. (2000) Assessing the cost-effectiveness of pharmacogenomics. AAPS Pharm. Sci., 29, 1–11. Available at: http://www.pharsci.org/.

    Google Scholar 

  662. Haan, M.N., Wallace, R. (2004) Can dementia be prevented? Brain aging in a population-based context. Annu. Rev. Public Health, 25, 1–24.

    PubMed  Google Scholar 

  663. Babiloni, C., Cassetta, E., Dal Forno, G., et al. (2006) Donepezil effects on sources of cortical rhythms in mild Alzheimer's disease: responders vs non-responders. Neuroimage, 31, 1650–1665.

    PubMed  Google Scholar 

  664. Bullock, R., Bergman, H., Touchon, J., et al. (2006) Effect of age on response to rivastigmine or donepezil in patients with Alzheimer's disease. Curr. Med. Res. Opin., 22, 483–494.

    CAS  PubMed  Google Scholar 

  665. Winblad, B., Kilander, L., Eriksson, S., et al. (2006) Donepezil in patients with severe Alzheimer's disease: double-blind, parallel-group, placebo-controlled study. Lancet, 367, 1057–1065.

    CAS  PubMed  Google Scholar 

  666. Hogan, D.B. (2006) Donepezil for severe Alzheimer's disease. Lancet, 367, 1031–1032.

    Google Scholar 

  667. Cacabelos, R. (2005) Role of nutrition in the prevention of Alzheimer's disease. Aging Health, 1, 359–362.

    CAS  Google Scholar 

  668. Need, A.C., Motulsky, A.G., Goldstein, D.B. (2005) Priorities and standards in pharmacogenetic research. Nat. Genet., 37, 671–681.

    CAS  PubMed  Google Scholar 

  669. Malhotra, A.K., Murphy, G.M., Kennedy, J.L. (2004) Pharmacogenetics of psychotropic drug response. Am. J. Psychiatry, 161, 780–796.

    PubMed  Google Scholar 

  670. Van Steen, K., McQueen, M.B., Herbert, A., et al. (2005) Genomic screening and replication using the same data set in family-based association testing. Nat. Genet., 37, 683–691.

    PubMed  Google Scholar 

  671. Eichelbaum, M., Ingelman-Sundberg, M., Evans, W.E. (2006) Pharmacogenomics and individualized drug therapy. Annu. Rev. Med., 57, 119–137.

    CAS  PubMed  Google Scholar 

  672. Barlow-Stewart, K., Burnett, L. (2006) Ethical considerations in the use of DNA for the diagnosis of disease. Clin. Biochem. Rev., 27, 53–61.

    Google Scholar 

Download references

Acknowledgments

I am thankful to all my collaborators at EuroEspes Biomedical Research Center, Institute of CNS Disorders, especially Dr. Victor Pichel, Gladys Bahamonde, Ivan Tellado, Carmen Fraile, Lola Corzo, Verónica Couceiro, Margarita Alcaraz, Laura Nebril, Cristina Muiño, and Angela Casas, as well as Dr. Lucía Fernández-Novoa, Ruth Llovo, Francisco Rocha, Ramón Alejo, Juan Carlos Carril, and Dr. Valter Lombardi at Ebiotec, Coruña, Spain, for their technical assistance. The Ebiotec Foundation provided finantial support for studies of pharmacogenomics in Alzheimer's disease.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cacabelos, R. (2008). Pharmacogenomics in Alzheimer's Disease. In: Yan, Q. (eds) Pharmacogenomics in Drug Discovery and Development. Methods in Molecular Biology™, vol 448. Humana Press. https://doi.org/10.1007/978-1-59745-205-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-205-2_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-887-4

  • Online ISBN: 978-1-59745-205-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics