Skip to main content

Simple Genetic Models for Anesthetic Action

  • Chapter
Neural Mechanisms of Anesthesia

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 322 Accesses

Abstract

Since their introduction 150 yr ago, volatile anesthetics have revolutionized the practice of medicine. However, it is not clearly understood how the volatile anesthetics produce any of their most profound effects: loss of consciousness, amnesia, and lack of perception of pain. This uncertainty is greatly accentuated by the large number of potential targets that are affected by volatile anesthetics (1,2,3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Franks, N. P. and Lieb, W. R. (1994) Molecular and cellular mechanisms of general anaesthesia. Nature 367, 607–614.

    Article  PubMed  CAS  Google Scholar 

  2. Kayser, E.-B., Morgan, P. G., and Sedensky, M. M. (1999) GAS-1: A mitochondrial protein controls sensitivity to volatile anesthetics in C. elegans. Anesthesiology 90, 545–554.

    CAS  Google Scholar 

  3. van Swinderen, B., Saifee, O., Shebester, L., Roberson, R., Nonet, M. L., and Crowder, C. M. (1999) A neomorphic syntaxin mutation blocks volatile-anesthetic action in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 96 (5), 2479–2484.

    Article  Google Scholar 

  4. Tanifuji, Y., Eger, E. I., II, and Terrell, R. C. (1977) Some characteristics of an exceptionally potent inhaled anesthetic: Thiomethoxyflurane. Anesth. Analg. 56, 387–391.

    Article  PubMed  CAS  Google Scholar 

  5. Koblin, D. D. (2000a) In Anesthesia, Mechanisms of Action, (Miller, R. D., ed.) Churchill Livingstone, New York, pp. 48–73.

    Google Scholar 

  6. Morgan, P. G., Sedensky, M. M., and Meneely, P. M. (1990) Multiple sites of action of volatile anesthetics in Caenorhabditis elegans. PNAS 87, 2965–2968.

    CAS  Google Scholar 

  7. Baker, R., Melchior, C., and Deitrich, R. (1980) The effect of halothane on mice selectively bred for differential sensitivity to alcohol. Pharmacol. Biochem. Behay. 12, 691–695.

    Article  CAS  Google Scholar 

  8. Koblin, D. D. and Deady, J. E. (1981) Anaesthetic requirement in mice selectively bred for differences in ethanol Sensitivity. Brit. J. Anaesth. 53, 5–10.

    Article  PubMed  CAS  Google Scholar 

  9. Simpson, V. J., Baker, R. C., and Timothy, B. S. (1993) Isoflurane but not halothane demonstrates diffential sleep time in long sleep and short sleep mice. Anesthesiology 79 (3A), A387.

    Google Scholar 

  10. Krishnan, K. S. and Nash, H. A. (1990) A genetic study of the anesthetic response: Mutants of Drosophila melanogaster altered in sensitivity to halothane. Proc. Natl. Acad. Sci. USA 87, 8632–8636.

    Article  PubMed  CAS  Google Scholar 

  11. Gamo, S., Ogaki, M., and Nakashima-Tanaka, E. (1981) Strain differences in minimum anesthetic concentrations in Drosophila melanogaster. Anesthesiology 54, 289–291.

    CAS  Google Scholar 

  12. Maclver, M. B. and Kendig, J. J. (1991) Anesthetic effects on resting membrane potential are voltage-dependent and agent-specific. Anesthesiology 74, 83–88.

    Article  Google Scholar 

  13. Sonner, J. M., Gong, D., and Eger, E. I., 2nd. (2000) Naturally occurring variability in anesthetic potency among inbred mouse strains. Anesth. Analg. 91, 720–726.

    Google Scholar 

  14. Zhang, Y., Wu, S., Eger, E. I., 2“d, and Sonner, J. M. (2001) Neither GABAA nor strychnine-sensitive glycine receptors are the sole mediators of MAC for isoflurane. Anesth. Analg. 92, 123–127.

    Google Scholar 

  15. Yamakura, T. and Harris, R. A. (2000) Effects of gaseous anesthetics nitrous oxide and xenon on ligand-gated ion channels. Comparison with isoflurane and ethanol. Anesthesiology 2000 93, 1095–1101.

    Article  PubMed  CAS  Google Scholar 

  16. Urban, B. W. and Friederich, P. (1998) Anesthetic mechanisms in-vitro and in general anesthesia. Toxicol. Lett. 100–101, 9–16.

    Article  Google Scholar 

  17. van Swinderen, B., Metz, L. B., Shebester, L. D., Mendel, J. E., Sternberg, P. W., and Crowder, C. M. (2001) Goalpha regulates volatile anesthetic action in Caenorhabditis elegans. Genetics 158, 643–655.

    Google Scholar 

  18. Oliver, S. G. (1997) From gene to screen with yeast. Curr. Opin. Genet. Dev. 7, 405–409.

    Article  PubMed  CAS  Google Scholar 

  19. Wilson, R. K. (1999) How the worm was won. The C. elegans genome sequencing project. Trends Genet. 15, 51–58.

    Article  PubMed  CAS  Google Scholar 

  20. Celniker, S. E. (2000) The Drosophila genome. Curr. Opin. Genet. Del). 10, 612–616.

    Article  CAS  Google Scholar 

  21. Lander, E. S., et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860–921.

    Article  PubMed  CAS  Google Scholar 

  22. Clark, M. S. (1999) Comparative genomics: the key to understanding the Human Genome Project. Bioessays 21, 121–130.

    Article  PubMed  CAS  Google Scholar 

  23. No author listed. (2001) Harvesting the fruits of the human genome. Nat. Genet. 27, 227, 228.

    Google Scholar 

  24. Keil, R. L., Wolfe, D., Reiner, T., Peterson, C. J., and Riley, J. L. (1996) Molecular genetic analysis of volatile anesthetic action. Mol. Cell. Biol. 16, 3446–3453.

    PubMed  CAS  Google Scholar 

  25. Wolfe, D., Hester, P., and Keil, R. L. (1998) Volatile anesthetic additivity and specificity in Saccharomyces cerevisiae. Anesthesiology 89, 174–181.

    Article  PubMed  CAS  Google Scholar 

  26. Wolfe, D., Reiner, T., Keeley, J. L., Pizzini, M., and Keil, R. L. (1999) Ubiquitin metabolism affects cellular response to volatile anesthetics in yeast. Mol. Cell. Biol. 19, 8254–8262.

    PubMed  CAS  Google Scholar 

  27. Lafont, F., Verkade, P., Galli, T., et al. (1999) Raft association of SNAP receptors acting in apical trafficking in Madin-Darby canine kidney cells. Proc. Natl. Acad. Sci. USA 96, 3734–3768.

    Article  PubMed  CAS  Google Scholar 

  28. Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77, 71–94.

    CAS  Google Scholar 

  29. Herman, R. K. (1988) Genetics of C. elegans. The Nematode Caenorhabditis elegans. (Wood, W. B., ed.) ( Cold Spring Harbor, Cold Spring Harbor Laboratory Press ) pp. 22–33.

    Google Scholar 

  30. Sulston, J. E. and Horvitz, H. R. (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dey. Biol. 56, 110–156.

    CAS  Google Scholar 

  31. Sulston, J. E., Schierenberg, E., White, J. G., and Thomson, J. N. (1983) The embryonic cell lineage of the nematode, Caenorhabditis elegans. Del). Biol. 100, 64–119.

    CAS  Google Scholar 

  32. White, J. G., Southgate, E., Thomson, J. N., and Brenner, S. (1986) The structure of the nervous system in Caenorhabditis elegans. Philos. Trans. Roy. Soc. Lond. 314B, 1–340.

    Article  CAS  Google Scholar 

  33. No authors listed. (1998) The genomic sequence of C. elegans. Science 282, 2012–2018.

    Google Scholar 

  34. Morgan, P. G., Sedensky, M. M., Meneely, P. M., and Cascorbi, H. F. (1988) The effect of two genes on anesthetic response in the nematode Caenorhabditis elegans. Anesthesiology 69, 246–251.

    CAS  Google Scholar 

  35. Crowder, C. M., Shebester, L. D., and Schedi, T. (1996) Behavioral effects of volatile anesthetics in Caenorhabditis elegans. Anesthesiology 85, 901–912.

    CAS  Google Scholar 

  36. Morgan, P. G and Cascorbi, H. F. (1985) Effect of Anesthetics and a Convulsant on Normal and Mutant Caenorhabditis elegans. Anesthesiology 62, 738–744.

    CAS  Google Scholar 

  37. van Swinderen, B., Saifee, O., Shebester, L., Roberson, R., Nonet, M. L., and Crowder, C. M. (1999) A neomorphic syntaxin mutation blocks volatile-anesthetic action in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 96, 2479–2484.

    Google Scholar 

  38. Kayser, B., Rajaram, S., Thomas, S., Morgan, P. G., and Sedensky, M. M. (1998) Control of anesthetic response in C. elegans. Toxicol. Lett. 100–101, 339–346.

    Article  Google Scholar 

  39. Koblin, D. D., Chortkoff, B. S., Laster, M. J., Eger, E. I., 2nd, Halsey, M. J., and Ionescu, P. (1994) Polyhalogenated and perfluorinated compounds that disobey the Meyer-Overton hypothesis. Anesth. Analg. 79, 1043–1048.

    Article  PubMed  CAS  Google Scholar 

  40. Morgan, P. G., Radke, G. W., and Sedensky, M. M. (2000) Effects of Nonimmobilizers and Halothane on Caenorhabditis elegans. Anesth. Analg. 91, 1007–1012.

    Article  CAS  Google Scholar 

  41. Morgan, P. G, Usiak, M., and Sedensky, M. M. (1996) Genetic differences affecting the potency of stereoisomers of isoflurane. Anesthesiology 85, 385–392.

    Article  PubMed  CAS  Google Scholar 

  42. Sedensky, M. M. and Meneely, P. M. (1987) Genetic analysis of halothane sensitivity in C. elegans. Science 236, 952–954.

    CAS  Google Scholar 

  43. Morgan, P. G, Sedensky, M. M., and Meneely, P. M. (1990) Multiple sites of action of volatile anesthetics in C. elegans. Proc. Natl. Acad. Sci. USA 87, 2965–2969.

    Article  CAS  Google Scholar 

  44. Park, E. C. and Horvitz, H. R. (1986) Mutations with dominant effects on the behavior and morphology of the nematode Caenorhabditis elegans. Genetics 113, 821–852.

    PubMed  CAS  Google Scholar 

  45. Rajaram, S., Spangler, T. L., Sedensky, M. M., and Morgan, P. G. (1999) A Stomatin and a Degenerin Interact to Control Anesthetic Sensitivity in C. elegans. Genetics 153, 1673–1682.

    CAS  Google Scholar 

  46. Rajaram, S., Sedensky, M. M., Morgan, P. G. (1998) A stomatin homologue controls sensitivity to volatile anesthetics in C. elegans. Proc. Natl. Acad. Sci. USA 95, 8761–8766.

    Article  CAS  Google Scholar 

  47. Stewart, G. W., Argent, A. C., and Dash, B. C. J. (1993) Stomatin: a putative cation transport regulator in red cell membrane. Biochim. Biophys. Acta 1225, 15–25.

    Google Scholar 

  48. Stewart, G. W., et al. (1992) Isolation of eDNA coding for a ubiquitous membrane protein deficient in high NA’, low K’, stomatocytic erythrocytes. Blood 79, 1593–1601.

    PubMed  CAS  Google Scholar 

  49. Mannsfeldt, A. G., Carroll, P., Stucky, C., et al. (1999) Stomatin, a MEC-2-like protein, is expressed by mammalian sensory neurons. Molec. Cell Neurosci. 13, 391–404.

    Article  PubMed  CAS  Google Scholar 

  50. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.

    Article  PubMed  CAS  Google Scholar 

  51. Sedensky, M. M, Siefker, J. M., Morgan, P. G. (2001) Stomatin homologues interact in Caenorhabditis elegans. Am..1. Physiol. Cell Physiol. 280, C1340—C1348.

    Google Scholar 

  52. Tavernarakis, N., Shreffler, W., Wang, S., and Driscoll, M. (1997) unc-8, a DEG/ENaC family member, encodes a subunit of a candidate mechanically gated channel that modulates C. elegans locomotion. Neuron 18, 107–119.

    Google Scholar 

  53. Phelan, P., Bacon, J. P., Davies, J. A., et al. (1998) Innexins: a family of invertebrate gap-junction proteins. Trends Genet. 14(9), 348, 349.

    Google Scholar 

  54. Lipardi, C., Nitsch, L., and Zurzolo, C. (2000) Detergent-insoluble GPI-anchored proteins are apically sorted in Fischer rat thyroid cells, but interference with cholesterol or sphingolipids differentially affects detergent insolubility and apical sorting. Mol. Biol. Cell 11, 531–542.

    PubMed  CAS  Google Scholar 

  55. Hooper, N. M. (1999) Detergent-insoluble glycosphigolipid/cholesterol-rich membrane domains, lipid rafts and caveolae. Molec. Emb. Biol. 16, 145–156.

    Article  CAS  Google Scholar 

  56. Snyers, L., Umlauf, E., and Prohaska, R. (1999) Association of stomatin with lipid-protein complexes in the plasma membrane and the endocytic compartment. Eur. J. Cell Biol. 78, 802–812.

    Article  PubMed  CAS  Google Scholar 

  57. Moffett, S,. Brown, D. A., and Linder, M. E. (2000) Lipid-dependent targeting of G proteins into rafts. J. Biol. Chem. 275, 2191–2198.

    Article  PubMed  CAS  Google Scholar 

  58. Morgan, P. G. and Sedensky, M. M. (1994) Mutations conferring new patterns of sensitivity to volatile anesthetics in C. elegans. Anesthesiology 81, 888–898.

    CAS  Google Scholar 

  59. Kayser, E.-B., Morgan, P. G., and Sedenskym, M. M. (1999) GAS-1: A mitochondrial protein controls sensitivity to volatile anesthetics in C. elegans. Anesthesiology 90, 545–554.

    CAS  Google Scholar 

  60. Kayser, E. B., Morgan, P. G., Hoppel, C. L., and Sedensky, M. M. (2001) Mitochondrial Expression and Function of GAS-1 in Caenorhabditis elegans. J. Biol. Chem. 122, 1187–1201.

    Google Scholar 

  61. Ishii, N., Fujii, M., Hartman, P. S., et al. (1998) A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 394, 694–697.

    Article  PubMed  CAS  Google Scholar 

  62. Hartman, P. S., Ishii, N., Kayser, E. B., Morgan, P. G., and Sedensky, M. M. (2001) Varied phenotypes caused by mutations altering mitochondrial complex I or complex II subunits in Caenorhabditis elegans. Mech. Aging Dev. In Press.

    Google Scholar 

  63. Cohen, P. J. (1973) Effects of anesthetics on mitochondrial function. Anesthesiology 39, 153–164.

    Article  PubMed  CAS  Google Scholar 

  64. Harris, R. A., Munroe, J., Farmer, B., Kim, K. C., and Jenkins, P. (1971) Action of halothane upon mitochondrial respiration. Arch. Biochem. Biophys. 142, 435–444.

    Article  PubMed  CAS  Google Scholar 

  65. Morgan, P. G., Hoppel, C. L., and Sedensky, M. M. (2002) Mitochondrial defects and anesthetic sensitivity. Anesthesiology 96, 1268–1269.

    Article  PubMed  Google Scholar 

  66. Koushika, S. P. and Nonet, M. L. (2000) Sorting and transport in C. elegans: A model system with a sequenced genome. Curr. Opin. Cell Biol. 12, 517–523.

    Article  PubMed  CAS  Google Scholar 

  67. Rand, J. B. and Nonet, M. L. (1997) Synaptic Transmission. in C. elegans II. ( Riddle, D. L., Blumenthal, T., Meyer, B. J., and Priess, J. R., eds.) Cold Spring Harbor, Cold Spring Harbor Laboratory Press, pp. 611–643.

    Google Scholar 

  68. Crowder, C. M. and Berilgen, J. (2000) Isoflurane Binds the Rat Synaptic Protein SNAP-25 at Clinical Concentrations. Anesthesiology A806.

    Google Scholar 

  69. Qi, J., Peters, K. W., Liu, C., Wang, J. M., Edinger, R. S., Johnson, J. P., Watkins, S. C., and Frizzell, R. A. (1999) Regulation of the amiloride-sensitive epithelial sodium channel by syntaxin 1A. J. Biol. Chem. 274, 30,345–30, 348.

    Google Scholar 

  70. Plant, P. J., Lafont, F., Lecat, S., Verkade, P., Simons, K., and Rotin, D. (2000) Apical membrane targeting of Nedd4 is mediated by an association of its C2 domain with annexin XIIIb. J. Cell Biol. 149, 1473–1484.

    Article  PubMed  CAS  Google Scholar 

  71. Gamo, S., Ogaki, M., and Nakashima-Tanaka, E. (1981) Strain differences in minimum anesthetic concentrations in Drosophila melanogaster. Anesthesiology 54, 289–293.

    Article  PubMed  CAS  Google Scholar 

  72. Gamo, S., Dodo, K., Matakatsu, H., and Tanaka, Y. (1998) Molecular genetical analysis of Drosophila ether sensitive mutants. Toxicol. Lett. 100–101, 329–337.

    Google Scholar 

  73. Krishnan, K. S. and Nash, H. A. (1990) A genetic study of the anesthetic response: mutants of Drosophila melanogaster altered in sensitivity to halothane. Proc. Natl. Acad. Sci. USA 87, 8632–8636.

    Article  PubMed  CAS  Google Scholar 

  74. Campbell, D. B. and Nash, H. A. (1994) Use of Drosophila mutants to distinguish among volatile general anesthetics. Proc. Natl. Acad. Sci. USA 91, 2135–2139.

    Article  PubMed  CAS  Google Scholar 

  75. Madhavan, M. C., Kumar, R. A., and Krishnan, K. S. (2000) Genetics of anesthetic response: autosomal mutations that render Drosophila resistant to halothane. Pharmacol. Biochem. Behay. 67, 749–757.

    Article  CAS  Google Scholar 

  76. Guan, Z., Scott, R. L., and Nash, H. A. (2000) A new assay for the genetic study of general anesthesia in Drosophila melanogaster: use in analysis of mutations in the X-chromsomal 12E region. J. Neurogen. 14, 25–42.

    Article  Google Scholar 

  77. Campbell, J. L. and Nash, H. A. (1998) The visually induced jump response of Drosophila melangaster is sensitive to volatile anesthetics. J. Neurogen. 12, 241–251.

    Article  CAS  Google Scholar 

  78. Walcourt, A. and Nash, H. A. (2000) Genetic effects on an anesthetic sensitive pathway in the brain of Drosophila. J. Neurobiol. 42, 69–78.

    CAS  Google Scholar 

  79. Nishikawa, K. and Kidokoro, Y. (1999) Halothane presynaptically depresses synaptic transmission in wild-type Drosophila larvae but not in halothane-resistant (har) mutants. Anesthesiology 90, 1691–1697.

    Article  PubMed  CAS  Google Scholar 

  80. Walcourt, A., Scott, R. L., and Nash, H. A. (2001) Blockage of one class of potassium channel alters the effectiveness of halothane in a brain circuit of Drosophila. Anesth. Analg. 92, 535–541.

    CAS  Google Scholar 

  81. Sonner, J. M., Gong, D., Li, J., Eger, E. I., 2nd, and Laster, M. J. (1999) Mouse strain modestly influences minimum alveolar anesthetic concentration and convulsivity of inhaled compounds. Anesth. Analg. 89, 1030–1034.

    Google Scholar 

  82. Sonner, J. M., Gong, D., Eger, and E. I., 2°d. (2000) Naturally occurring variability in anesthetic potency among inbred mouse strains. Anesth. Analg. 91, 720–726.

    Google Scholar 

  83. Demarest, K., McCaughran, J., Jr., Mahjubi, E., Cipp, L., and Hitzemann, R. (1999) Identification of an acute ethanol response quantitative trait locus on mouse chromosome 2. J. Neurosci. 19, 549–561.

    PubMed  CAS  Google Scholar 

  84. Browman, K. E. and Crabbe, J. C. (2000) Quantitative trait loci affecting ethanol sensitivity in BXD recombinant inbred mice. Alcoh. Clin. Exp. Res. 24, 17–23.

    Google Scholar 

  85. Hood, H. M. and Buck, K. J. (2000) Allelic variation in the GABA A receptor gamma2 subunit is associated with genetic susceptibility to ethanol-induced motor incoordination and hypothermia, conditioned taste aversion, and withdrawal in BXD/Ty recombinant inbred mice. Alcoh. Clin. Exp. Res. 24, 1327–1334.

    Google Scholar 

  86. Hanania, T., Negri, C. A, Dunwiddie, T. V., and Zahniser, N. R. (2000) N-methyl-o-aspartate receptor responses are differentially modulated by noncompetitive receptor antagonists and ethanol in inbred long-sleep and short-sleep mice: behavior and electrophysiology. Alcoh. Clin. Exp. Res. 24, 1750–1758.

    Google Scholar 

  87. Erwin, V. G., Heston, W. D., McClearn, G. E., and Deitrich, R. A. (1976) Effect of hypnotics on mice genetically selected for sensitivity to ethanol. Pharmacol. Biochem. Behay. 4, 679–683.

    Google Scholar 

  88. Firestone, L. L., Korpim, E. R., Niemi, L., Rosenberg, P. H., Homanics, G. E., and Quinlan, J. J. (2000) Halothane and desflurane requirements in alcohol-tolerant and -nontolerant rats. Brit. J. Anaesth. 85, 757–762.

    Google Scholar 

  89. Quinlan, J. J., Homanics, G. E., and Firestone, L. L. (1998) Anesthesia sensitivity in mice that lack the beta3 subunit of the gamma-aminobutyric acid type A receptor. Anesthesiology 88, 775–780.

    Article  PubMed  CAS  Google Scholar 

  90. Ugarte, S. D., Homanics, G. E., Firestone, L. L., and Hammond, D. L. (2000) Sensory thresholds and the antinociceptive effects of GABA receptor agonists in mice lacking the beta3 subunit of the GABA, receptor. Neuroscience 95, 795–806.

    Article  PubMed  CAS  Google Scholar 

  91. Homanics, G. E., Ferguson, C., Quinlan, J. J., et al. (1997) Gene knockout of the alpha6 subunit of the gammaaminobutyric acid type A receptor: lack of effect on responses to ethanol, pentobarbital, and general anesthetics. Mol. Pharmacol. 51, 588–596.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morgan, P.G., Sedensky, M. (2003). Simple Genetic Models for Anesthetic Action. In: Antognini, J.F., Carstens, E., Raines, D.E. (eds) Neural Mechanisms of Anesthesia. Contemporary Clinical Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-322-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-322-4_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-294-0

  • Online ISBN: 978-1-59259-322-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics