Skip to main content

Cereal Circular RNAs (circRNAs): An Overview of the Computational Resources for Identification and Analysis

  • Protocol
  • First Online:
Cereal Genomics

Abstract

Circular RNAs (circRNAs) are a widespread class of endogenous noncoding RNAs and they have been studied in the past few years, implying important biological functions in all kingdoms of life. Recently, circRNAs have been identified in many plant species, including cereal crops, showing differential expression during stress response and developmental programs, which suggests their role in these process. In the following years, it is expected that insights into the functional roles of circRNAs can be used by cereal scientists and molecular breeders with the aim to develop new strategies for crop improvement. Here, we briefly outline the current knowledge about circRNAs in plants and we also outline available computational resources for their validation and analysis in cereal species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hsu MT, Coca-Prados M (1979) Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature 280:339–340

    Article  CAS  Google Scholar 

  2. Cocquerelle C, Daubersies P, Majérus MA et al (1992) Splicing with inverted order of exons occurs proximal to large introns. EMBO J 11:1095–1098

    Article  CAS  Google Scholar 

  3. Salzman J, Gawad C, Wang PL et al (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7:e30733

    Article  CAS  Google Scholar 

  4. Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338

    Article  CAS  Google Scholar 

  5. Ye CY, Chen L, Liu C et al (2015) Widespread noncoding circular RNAs in plants. New Phytol 208:88–95

    Article  CAS  Google Scholar 

  6. Ye CY, Xu H, Shen EH et al (2014) Genome-wide identification of non-coding RNAs interacted with microRNAs in soybean. Front Plant Sci 5:743

    Article  Google Scholar 

  7. Hansen TB, Jensen TI, Clausen BH et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388

    Article  CAS  Google Scholar 

  8. Ashwal-Fluss R, Meyer M, Pamudurti NR et al (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56:55–66

    Article  CAS  Google Scholar 

  9. Lukiw WJ (2013) Circular RNA (circRNA) in Alzheimer’s disease (AD). Front Genet 4:307

    PubMed  PubMed Central  Google Scholar 

  10. Wang Y, Mo Y, Gong Z et al (2017) Circular RNAs in human cancer. Mol Cancer 16:25

    Article  CAS  Google Scholar 

  11. Lu T, Cui L, Zhou Y et al (2015) Transcriptome-wide investigation of circular RNAs in rice. RNA 21:2076–2087

    Article  CAS  Google Scholar 

  12. Ye CY, Zhang X, Chu Q et al (2017) Full-length sequence assembly reveals circular RNAs with diverse non-GT/AG splicing signals in rice. RNA Biol 14:1055–1063

    Article  Google Scholar 

  13. Chen L, Zhang P, Fan Y et al (2018) Circular RNAs mediated by transposons are associated with transcriptomic and phenotypic variation in maize. New Phytol 217:1292–1306

    Article  CAS  Google Scholar 

  14. Ghorbani A, Izadpanah K, Peters JR et al (2018) Detection and profiling of circular RNAs in uninfected and maize Iranian mosaic virus-infected maize. Plant Sci 274:402–409

    Article  CAS  Google Scholar 

  15. Darbani B, Noeparvar S, Borg S (2016) Identification of circular RNAs from the parental genes involved in multiple aspects of cellular metabolism in barley. Front Plant Sci 7:776

    Article  Google Scholar 

  16. Wang Y, Yang M, Wei S et al (2016) Identification of circular RNAs and their targets in leaves of Triticum aestivum L. under dehydration stress. Front Plant Sci 7:2024

    PubMed  Google Scholar 

  17. Zhang Y, Liang W, Zhang P et al (2017) Circular RNAs: emerging cancer biomarkers and targets. J Exp Clin Cancer Res 36:152

    Article  Google Scholar 

  18. Sablok G, Zhao H, Sun X (2016) Plant circular RNAs (circRNAs): transcriptional regulation beyond miRNAs in plants. Mol Plant 9:192–194

    Article  CAS  Google Scholar 

  19. Wang Y, Wang Z (2015) Efficient backsplicing produces translatable circular mRNAs. RNA 21:172–179

    Article  CAS  Google Scholar 

  20. Jeck WR, Sorrentino JA, Wang K et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19:141–157

    Article  CAS  Google Scholar 

  21. Liang D, Wilusz JE (2014) Short intronic repeat sequences facilitate circular RNA production. Genes Dev 28:2233–2247

    Article  Google Scholar 

  22. Zhang P, Fan Y, Sun X et al (2019) A large-scale circular RNA profiling reveals universal molecular mechanisms responsive to drought stress in maize and Arabidopsis. Plant J 98:697. https://doi.org/10.1111/tpj.14267

    Article  CAS  PubMed  Google Scholar 

  23. Conn SJ, Pillman KA, Toubia J et al (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell 160:1125–1134

    Article  CAS  Google Scholar 

  24. Zhou R, Zhu Y, Zhao J et al (2017) Transcriptome-wide identification and characterization of potato circular RNAs in response to Pectobacterium carotovorum subspecies brasiliense infection. Int J Mol Sci 19:71

    Article  Google Scholar 

  25. Li X, Yang L, Chen LL (2018) The biogenesis, functions, and challenges of circular RNAs. Mol Cell 71:428–442

    Article  CAS  Google Scholar 

  26. Tang B, Hao Z, Zhu Y et al (2018) Genome-wide identification and functional analysis of circRNAs in Zea mays. PLoS One 13:e0202375

    Article  CAS  Google Scholar 

  27. Xu Y, Ren Y, Lin T et al (2019) Identification and characterization of CircRNAs involved in the regulation of wheat root length. Biol Res 52:19

    Article  Google Scholar 

  28. Jakobi T, Dieterich C (2018) Deep computational circular RNA analytics from RNA-seq data. Methods Mol Biol 1724:9–25

    Article  CAS  Google Scholar 

  29. Chu Q, Zhang X, Zhu X et al (2017) PlantcircBase: a database for plant circular RNAs. Mol Plant 10:1126–1128

    Article  CAS  Google Scholar 

  30. Ye J, Wang L, Li S et al (2017) AtCircDB: a tissue-specific database for Arabidopsis circular RNAs. Brief Bioinform 20:58. https://doi.org/10.1093/bib/bbx089

    Article  Google Scholar 

  31. Chen L, Yu Y, Zhang X et al (2016) PcircRNA_finder: a software for circRNA prediction in plants. Bioinformatics 32:3528–3529

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang XO, Dong R, Zhang Y et al (2016) Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res 26:1277–1287

    Article  CAS  Google Scholar 

  33. Zhang P, Meng X, Chen H, et al (2017) PlantCircNet: a database for plant circRNA–miRNA–mRNA regulatory networks. Database. 2017. https://doi.org/10.1093/database/bax089

  34. Liu YC, Li JR, Sun CH et al (2016) CircNet: a database of circular RNAs derived from transcriptome sequencing data. Nucleic Acids Res 44(D1):D209–D215

    Article  CAS  Google Scholar 

  35. Amaral PP, Dinger ME, Mattick JS (2013) Non-coding RNAs in homeostasis, disease and stress responses: an evolutionary perspective. Brief Funct Genomics 12:254–278

    Article  CAS  Google Scholar 

  36. Celton JM, Gaillard S, Bruneau M et al (2014) Widespread anti-sense transcription in apple is correlated with siRNA production and indicates a large potential for transcriptional and/or post-transcriptional control. New Phytol 203:287–299

    Article  CAS  Google Scholar 

  37. Weiberg A, Jin H (2015) Small RNAs—the secret agents in the plant–pathogen interactions. Curr Opin Plant Biol 26:87–94

    Article  CAS  Google Scholar 

  38. Zhu B, Yang Y, Li R et al (2015) RNA sequencing and functional analysis implicate the regulatory role of long non-coding RNAs in tomato fruit ripening. J Exp Bot 66:4483–4495

    Article  CAS  Google Scholar 

  39. Lai X, Bazin J, Webb S et al (2018) CircRNAs in plants. Adv Exp Med Biol 1087:329–343

    Article  CAS  Google Scholar 

  40. Li QF, Zhang YC, Chen YQ et al (2017) Circular RNAs roll into the regulatory network of plants. Biochem Biophys Res Commun 488:382–386

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vaschetto, L.M., Litholdo, C.G., Sendín, L.N., Terenti Romero, C.M., Filippone, M.P. (2020). Cereal Circular RNAs (circRNAs): An Overview of the Computational Resources for Identification and Analysis. In: Vaschetto, L. (eds) Cereal Genomics. Methods in Molecular Biology, vol 2072. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9865-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9865-4_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9864-7

  • Online ISBN: 978-1-4939-9865-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics