Skip to main content

Pharmacogenetics: Role of Single Nucleotide Polymorphisms

  • Protocol
  • First Online:
Theranostics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2054))

  • 1456 Accesses

Abstract

Genome sequencing methods have basically similar algorithms, although they show a few differences between the platforms. The human genome contains approximately three billion base pairs, and this amount is huge and therefore impossible to sequence at one step. However, this amount is not a problem for developed technology. Researchers break DNA into small random pieces and then sequence and reassemble. Library preparation, sequencing, bioinformatic approaches and reporting. High-quality library preparation is critical and the most important part of the next-generation sequencing workflow. Successful sequencing directly requires high-quality libraries. Sequencing is second step and all high-throughput sequencing approaches are generally based on conventional Sanger sequencing. After preparation of library and sequencing, later steps are completely computer-based (in silico) approaches called as bioinformatics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alwi ZB (2005) The use of SNPs in pharmacogenomics studies. Malays J Med Sci 12(2):4–12

    PubMed  PubMed Central  Google Scholar 

  2. Peet NP, Bey P (2001) Pharmacogenomics: challenges and opportunities. Drug Discov Today 6(10):495–498

    Article  PubMed  Google Scholar 

  3. Roses AD (2000) Pharmacogenetics and the practice of medicine. Nature 405(6788):857–865. https://doi.org/10.1038/35015728

    Article  CAS  PubMed  Google Scholar 

  4. Hoehe MR, Kroslak T (2004) Genetic variation and pharmacogenomics: concepts, facts, and challenges. Dialogues Clin Neurosci 6(1):5–26

    PubMed  PubMed Central  Google Scholar 

  5. Roden DM, Altman RB, Benowitz NL, Flockhart DA, Giacomini KM, Johnson JA et al (2006) Pharmacogenomics: challenges and opportunities. Ann Intern Med 145(10):749–757

    Article  PubMed  PubMed Central  Google Scholar 

  6. de Man FM, Goey AKL, van Schaik RHN, Mathijssen RHJ, Bins S (2018) Individualization of irinotecan treatment: a review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Clin Pharmacokinet. https://doi.org/10.1007/s40262-018-0644-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Muir P, Li S, Lou S, Wang D, Spakowicz DJ, Salichos L et al (2016) The real cost of sequencing: scaling computation to keep pace with data generation. Genome Biol 17:53. https://doi.org/10.1186/s13059-016-0917-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gonzaga-Jauregui C, Lupski JR, Gibbs RA (2012) Human genome sequencing in health and disease. Annu Rev Med 63:35–61. https://doi.org/10.1146/annurev-med-051010-162644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Meienberg J, Bruggmann R, Oexle K, Matyas G (2016) Clinical sequencing: is WGS the better WES? Hum Genet 135(3):359–362. https://doi.org/10.1007/s00439-015-1631-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Belkadi A, Bolze A, Itan Y, Cobat A, Vincent QB, Antipenko A et al (2015) Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc Natl Acad Sci U S A 112(17):5473–5478. https://doi.org/10.1073/pnas.1418631112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stasik S, Schuster C, Ortlepp C, Platzbecker U, Bornhäuser M, Schetelig J et al (2018) An optimized targeted Next-Generation Sequencing approach for sensitive detection of single nucleotide variants. Biomol Detect Quantif 15:6–12. https://doi.org/10.1016/j.bdq.2017.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kukurba KR, Montgomery SB (2015) RNA sequencing and analysis. Cold Spring Harb Protoc 2015(11):951–969. https://doi.org/10.1101/pdb.top084970

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nalpathamkalam T, Derkach A, Paterson AD, Merico D (2014) Genetic Analysis Workshop 18 single-nucleotide variant prioritization based on protein impact, sequence conservation, and gene annotation. BMC Proc 8.(Suppl 1 Genetic Analysis Workshop 18Vanessa Olmo:S11. https://doi.org/10.1186/1753-6561-8-S1-S11

    Article  PubMed  PubMed Central  Google Scholar 

  14. Marian AJ (2014) Sequencing your genome: what does it mean? Methodist Debakey Cardiovasc J 10(1):3–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Head SR, Komori HK, LaMere SA, Whisenant T, Van Nieuwerburgh F, Salomon DR et al (2014) Library construction for next-generation sequencing: overviews and challenges. Biotechniques 56(2):61–64, 66, 68, passim. https://doi.org/10.2144/000114133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hedegaard J, Thorsen K, Lund MK, Hein AM, Hamilton-Dutoit SJ, Vang S et al (2014) Next-generation sequencing of RNA and DNA isolated from paired fresh-frozen and formalin-fixed paraffin-embedded samples of human cancer and normal tissue. PLoS One 9(5):e98187. https://doi.org/10.1371/journal.pone.0098187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Einaga N, Yoshida A, Noda H, Suemitsu M, Nakayama Y, Sakurada A et al (2017) Assessment of the quality of DNA from various formalin-fixed paraffin-embedded (FFPE) tissues and the use of this DNA for next-generation sequencing (NGS) with no artifactual mutation. PLoS One 12(5):e0176280. https://doi.org/10.1371/journal.pone.0176280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu L, Li Y, Li S, Hu N, He Y, Pong R et al (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012:251364. https://doi.org/10.1155/2012/251364

    Article  PubMed  PubMed Central  Google Scholar 

  19. Buermans HP, den Dunnen JT (2014) Next generation sequencing technology: advances and applications. Biochim Biophys Acta 1842(10):1932–1941. https://doi.org/10.1016/j.bbadis.2014.06.015

    Article  CAS  PubMed  Google Scholar 

  20. Ekblom R, Wolf JB (2014) A field guide to whole-genome sequencing, assembly and annotation. Evol Appl 7(9):1026–1042. https://doi.org/10.1111/eva.12178

    Article  PubMed  PubMed Central  Google Scholar 

  21. Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO et al (2015) A global reference for human genetic variation. Nature 526(7571):68–74. https://doi.org/10.1038/nature15393

    Article  CAS  PubMed  Google Scholar 

  22. Hildebrandt F, Heeringa SF, Rüschendorf F, Attanasio M, Nürnberg G, Becker C et al (2009) A systematic approach to mapping recessive disease genes in individuals from outbred populations. PLoS Genet 5(1):e1000353. https://doi.org/10.1371/journal.pgen.1000353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wray NR, Goddard ME, Visscher PM (2007) Prediction of individual genetic risk to disease from genome-wide association studies. Genome Res 17(10):1520–1528. https://doi.org/10.1101/gr.6665407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abraham G, Inouye M (2015) Genomic risk prediction of complex human disease and its clinical application. Curr Opin Genet Dev 33:10–16. https://doi.org/10.1016/j.gde.2015.06.005

    Article  CAS  PubMed  Google Scholar 

  25. Wilkening S, Chen B, Bermejo JL, Canzian F (2009) Is there still a need for candidate gene approaches in the era of genome-wide association studies? Genomics 93(5):415–419. https://doi.org/10.1016/j.ygeno.2008.12.011

    Article  CAS  PubMed  Google Scholar 

  26. Patnala R, Clements J, Batra J (2013) Candidate gene association studies: a comprehensive guide to useful in silico tools. BMC Genet 14:39. https://doi.org/10.1186/1471-2156-14-39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ball AD, Stapley J, Dawson DA, Birkhead TR, Burke T, Slate J (2010) A comparison of SNPs and microsatellites as linkage mapping markers: lessons from the zebra finch (Taeniopygia guttata). BMC Genomics 11:218. https://doi.org/10.1186/1471-2164-11-218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wallace C, Dobson RJ, Munroe PB, Caulfield MJ (2007) Information capture using SNPs from HapMap and whole-genome chips differs in a sample of inflammatory and cardiovascular gene-centric regions from genome-wide estimates. Genome Res 17(11):1596–1602. https://doi.org/10.1101/gr.5996407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rüschendorf F, Nürnberg P (2005) ALOHOMORA: a tool for linkage analysis using 10K SNP array data. Bioinformatics 21(9):2123–2125. https://doi.org/10.1093/bioinformatics/bti264

    Article  PubMed  Google Scholar 

  30. Hoffmann K, Lindner TH (2005) easyLINKAGE-Plus—automated linkage analyses using large-scale SNP data. Bioinformatics 21(17):3565–3567. https://doi.org/10.1093/bioinformatics/bti571

    Article  CAS  PubMed  Google Scholar 

  31. Inaoka K, Inokawa Y, Nomoto S (2015) Genomic-wide analysis with microarrays in human oncology. Microarrays (Basel) 4(4):454–473. https://doi.org/10.3390/microarrays4040454

    Article  CAS  Google Scholar 

  32. Ballester B, Johnson N, Proctor G, Flicek P (2010) Consistent annotation of gene expression arrays. BMC Genomics 11:294. https://doi.org/10.1186/1471-2164-11-294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Karczewski KJ, Daneshjou R, Altman RB (2012) Chapter 7: Pharmacogenomics. PLoS Comput Biol 8(12):e1002817. https://doi.org/10.1371/journal.pcbi.1002817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63. https://doi.org/10.1038/nrg2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R et al (1998) Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280(5366):1077–1082

    Article  CAS  PubMed  Google Scholar 

  36. Fan JB, Oliphant A, Shen R, Kermani BG, Garcia F, Gunderson KL et al (2003) Highly parallel SNP genotyping. Cold Spring Harb Symp Quant Biol 68:69–78

    Article  CAS  PubMed  Google Scholar 

  37. Kurg A, Tõnisson N, Georgiou I, Shumaker J, Tollett J, Metspalu A (2000) Arrayed primer extension: solid-phase four-color DNA resequencing and mutation detection technology. Genet Test 4(1):1–7. https://doi.org/10.1089/109065700316408

    Article  CAS  PubMed  Google Scholar 

  38. Gunderson KL, Steemers FJ, Ren H, Ng P, Zhou L, Tsan C et al (2006) Whole-genome genotyping. Methods Enzymol 410:359–376. https://doi.org/10.1016/S0076-6879(06)10017-8

    Article  CAS  PubMed  Google Scholar 

  39. DeRisi J, Penland L, Brown PO, Bittner ML, Meltzer PS, Ray M et al (1996) Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 14(4):457–460. https://doi.org/10.1038/ng1296-457

    Article  CAS  PubMed  Google Scholar 

  40. LaFramboise T (2009) Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucleic Acids Res 37(13):4181–4193. https://doi.org/10.1093/nar/gkp552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bock C (2012) Analysing and interpreting DNA methylation data. Nat Rev Genet 13(10):705–719. https://doi.org/10.1038/nrg3273

    Article  CAS  PubMed  Google Scholar 

  42. Kurdyukov S, Bullock M (2016) DNA methylation analysis: choosing the right method. Biology (Basel) 5(1). https://doi.org/10.3390/biology5010003

    Article  PubMed Central  Google Scholar 

  43. Rew DA (2001) DNA microarray technology in cancer research. Eur J Surg Oncol 27(5):504–508. https://doi.org/10.1053/ejso.2001.1116

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yucesan, E., Ozten, N. (2019). Pharmacogenetics: Role of Single Nucleotide Polymorphisms. In: Batra, J., Srinivasan, S. (eds) Theranostics. Methods in Molecular Biology, vol 2054. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9769-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9769-5_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9768-8

  • Online ISBN: 978-1-4939-9769-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics