Skip to main content

Fluorescence In Situ Hybridization and Rehybridization Using Bacterial Artificial Chromosome Probes

  • Protocol
  • First Online:
Theranostics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2054))

  • 1487 Accesses

Abstract

Fluorescence in situ hybridization (FISH) method enables in situ genetic analysis of both metaphase and interphase cells from different types of material, including cell lines, cell smears, and fresh and paraffin-embedded tissue. Despite the growing number of commercially available FISH probes, still for large number of gene loci or chromosomal regions commercial probes are not available. Here we describe a simple method for generating FISH probes using bacterial artificial chromosomes (BAC). Due to genome-wide coverage of BAC clones, there are almost unlimited possibilities for the analysis of any genomic regions using BAC FISH probes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trask BJ (2002) Human cytogenetics: 46 chromosomes, 46 years and counting. Nat Rev Genet 3(10):769–778. https://doi.org/10.1038/nrg905

    Article  PubMed  Google Scholar 

  2. Cui C, Shu W, Li P (2016) Fluorescence in situ hybridization: cell-based genetic diagnostic and research applications. Front Cell Dev Biol 4:89. https://doi.org/10.3389/fcell.2016.00089

    Article  PubMed  PubMed Central  Google Scholar 

  3. Stankiewicz E, Mao X, Mangham DC, Xu L, Yeste-Velasco M, Fisher G et al (2017) Identification of FBXL4 as a metastasis associated gene in prostate cancer. Sci Rep 7(1):5124. https://doi.org/10.1038/s41598-017-05209-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lu YJ, Dong XY, Guo SP, Ke Y, Cheng SJ (1996) Integration of SV40 at 12q23 in SV40-immortalized human bronchial epithelial cells. Carcinogenesis 17(9):2089–2091

    Article  CAS  Google Scholar 

  5. Lu YJ, Birdsall S, Summersgill B, Smedley D, Osin P, Fisher C et al (1999) Dual colour fluorescence in situ hybridization to paraffin-embedded samples to deduce the presence of the der(X)t(X;18)(p11.2;q11.2) and involvement of either the SSX1 or SSX2 gene: a diagnostic and prognostic aid for synovial sarcoma. J Pathol 187(4):490–496. https://doi.org/10.1002/(SICI)1096-9896(199903)187:4<490::AID-PATH274>3.0.CO;2-X

    Article  CAS  PubMed  Google Scholar 

  6. Tonnies H (2002) Modern molecular cytogenetic techniques in genetic diagnostics. Trends Mol Med 8(6):246–250

    Article  CAS  Google Scholar 

  7. Schrock E, du Manoir S, Veldman T, Schoell B, Wienberg J, Ferguson-Smith MA et al (1996) Multicolor spectral karyotyping of human chromosomes. Science 273(5274):494–497

    Article  CAS  Google Scholar 

  8. Speicher MR, Gwyn Ballard S, Ward DC (1996) Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 12(4):368–375. https://doi.org/10.1038/ng0496-368

    Article  CAS  PubMed  Google Scholar 

  9. Lu YJ, Morris JS, Edwards PA, Shipley J (2000) Evaluation of 24-color multifluor-fluorescence in-situ hybridization (M-FISH) karyotyping by comparison with reverse chromosome painting of the human breast cancer cell line T-47D. Chromosom Res 8(2):127–132

    Article  CAS  Google Scholar 

  10. Kearney L (2001) Molecular cytogenetics. Best Pract Res Clin Haematol 14(3):645–669. https://doi.org/10.1053/beha.2001.0159

    Article  CAS  PubMed  Google Scholar 

  11. Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F et al (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258(5083):818–821

    Article  CAS  Google Scholar 

  12. Wang R, Lu YJ, Fisher C, Bridge JA, Shipley J (2001) Characterization of chromosome aberrations associated with soft-tissue leiomyosarcomas by twenty-four-color karyotyping and comparative genomic hybridization analysis. Genes Chromosomes Cancer 31(1):54–64. https://doi.org/10.1002/gcc.1118

    Article  PubMed  Google Scholar 

  13. Jones C, Foschini MP, Chaggar R, Lu YJ, Wells D, Shipley JM et al (2000) Comparative genomic hybridization analysis of myoepithelial carcinoma of the breast. Lab Investig 80(6):831–836

    Article  CAS  Google Scholar 

  14. Lu YJ, Birdsall S, Osin P, Gusterson B, Shipley J (1997) Phyllodes tumors of the breast analyzed by comparative genomic hybridization and association of increased 1q copy number with stromal overgrowth and recurrence. Genes Chromosomes Cancer 20(3):275–281

    Article  CAS  Google Scholar 

  15. Lu YJ, Osin P, Lakhani SR, Di Palma S, Gusterson BA, Shipley JM (1998) Comparative genomic hybridization analysis of lobular carcinoma in situ and atypical lobular hyperplasia and potential roles for gains and losses of genetic material in breast neoplasia. Cancer Res 58(20):4721–4727

    CAS  PubMed  Google Scholar 

  16. Lu YJ, Williamson D, Clark J, Wang R, Tiffin N, Skelton L et al (2001) Comparative expressed sequence hybridization to chromosomes for tumor classification and identification of genomic regions of differential gene expression. Proc Natl Acad Sci U S A 98(16):9197–9202. https://doi.org/10.1073/pnas.161272798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bharaj BB, Luo LY, Jung K, Stephan C, Diamandis EP (2002) Identification of single nucleotide polymorphisms in the human kallikrein 10 (KLK10) gene and their association with prostate, breast, testicular, and ovarian cancers. Prostate 51(1):35–41

    Article  CAS  Google Scholar 

  18. Lu YJ, Williamson D, Wang R, Summersgill B, Rodriguez S, Rogers S et al (2003) Expression profiling targeting chromosomes for tumor classification and prediction of clinical behavior. Genes Chromosomes Cancer 38(3):207–214. https://doi.org/10.1002/gcc.10276

    Article  CAS  PubMed  Google Scholar 

  19. Mao X, James SY, Yanez-Munoz RJ, Chaplin T, Molloy G, Oliver RT et al (2007) Rapid high-resolution karyotyping with precise identification of chromosome breakpoints. Genes Chromosomes Cancer 46(7):675–683. https://doi.org/10.1002/gcc.20452

    Article  CAS  PubMed  Google Scholar 

  20. Shen Y, Wu BL (2009) Microarray-based genomic DNA profiling technologies in clinical molecular diagnostics. Clin Chem 55(4):659–669. https://doi.org/10.1373/clinchem.2008.112821

    Article  CAS  PubMed  Google Scholar 

  21. Xue L, Mao X, Ren G, Stankiewicz E, Kudahetti SC, Lin D et al (2012) Chinese and Western prostate cancers show alternate pathogenetic pathways in association with ERG status. Am J Cancer Res 2(6):736–744

    PubMed  PubMed Central  Google Scholar 

  22. Bastus NC, Boyd LK, Mao X, Stankiewicz E, Kudahetti SC, Oliver RT et al (2010) Androgen-induced TMPRSS2:ERG fusion in nonmalignant prostate epithelial cells. Cancer Res 70(23):9544–9548. https://doi.org/10.1158/0008-5472.CAN-10-1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mao X, Yu Y, Boyd LK, Ren G, Lin D, Chaplin T et al (2010) Distinct genomic alterations in prostate cancers in Chinese and Western populations suggest alternative pathways of prostate carcinogenesis. Cancer Res 70(13):5207–5212. https://doi.org/10.1158/0008-5472.CAN-09-4074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Giraldo P, Montoliu L (2001) Size matters: use of YACs, BACs and PACs in transgenic animals. Transgenic Res 10(2):83–103

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Jie Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stankiewicz, E., Guo, T., Mao, X., Lu, YJ. (2019). Fluorescence In Situ Hybridization and Rehybridization Using Bacterial Artificial Chromosome Probes. In: Batra, J., Srinivasan, S. (eds) Theranostics. Methods in Molecular Biology, vol 2054. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9769-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9769-5_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9768-8

  • Online ISBN: 978-1-4939-9769-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics