Skip to main content

Yeast Genome Screening and Methods for the Discovery of Metabolic Pathways Involved in a Phenotypic Response to Anticancer Agents

  • Protocol
  • First Online:
Yeast Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2049))

  • 1180 Accesses

Abstract

The dramatic increase of cancer in the world drives the search for a new generation of drugs useful in effective and safe chemotherapy. In the postgenomic era the use of the yeast Saccharomyces cerevisiae as a simple eukaryotic model is required in molecular studies of biological activity of compounds that may be potential drugs in the future. The phenotype analysis of numerous deletion mutants (from the EUROSCARF collection) allows one to define the specific influence of tested compound on metabolism, stress generation and response of eukaryotic cell to stress. Moreover, it allows one to determine cell viability, design of new drugs and doses used in preclinical and clinical trials. Undoubtedly, this is also a good way to save the lives of many laboratory animals. Here we present a simple and cheap new approach to study the metabolic and stress response pathways in eukaryotic cells involved in the response to tested compounds (e.g., anticancer agents). The precise determination of biological activity mechanisms of tested compounds at the molecular level can contribute to the fast introduction of new cancer therapies, which is extremely important nowadays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oliver SG, Van der Aart QJM, Agostoni-Carbone ML et al (1992) The complete DNA sequence of yeast chromosome III. Nature 357:38–46

    Article  CAS  Google Scholar 

  2. Richardson SM, Mitchell LA, Stracquadanio G et al (2017) Design of a synthetic yeast genome. Science 355:1040–1044

    Article  CAS  Google Scholar 

  3. Bharucha N, Kumar A (2007) Yeast genomics and drug target identification. Comb Chem High Throughput Screen 10:618–634

    Article  CAS  Google Scholar 

  4. Goffeau A, Barrell BG, Bussey H et al (1996) Life with 6000 genes. Science 274:546,563–546,567

    Article  Google Scholar 

  5. Dolinski K, Ball CA, Chervitz SA et al (1998) Expanding yeast knowledge online. Yeast 14:1453–1469

    Article  CAS  Google Scholar 

  6. Davenport M (2015) Tapping Yeast’s genome. Chem Eng News 93:8–13

    Google Scholar 

  7. Lis P, Jurkiewicz P, Cal-Bakowska M et al (2016) Screening the yeast genome for energetic metabolism pathways involved in a phenotypic response to the anti-cancer agent 3-bromopyruvate. Oncotarget 7:10153–10173

    Article  Google Scholar 

  8. Hammer SK, Avalos JL (2017) Harnessing yeast organelles for metabolic engineering. Nat Chem Biol 8:823–832

    Article  Google Scholar 

  9. Rabilloud TH (ed) (2000) Proteome research: two-dimensional gel electrophoresis and identification methods. Springer, Berlin, Heidelberg

    Google Scholar 

  10. Nielsen J, Jewett MC (eds) (2007) Metabolomics. A powerful tool in systems biology. Springer, Berlin, Heidelberg

    Google Scholar 

  11. Atkin AL (2011) Yeast bioinformatics and strain engineering resources. Methods Mol Biol 765:173–187

    Article  CAS  Google Scholar 

  12. Rieger J, Kaniak A, Jean-Yves Coppée JY et al (1997) Large-scale phenotypic analysis—the pilot project on yeast chromosome III. Yeast 13:1547–1562

    Article  CAS  Google Scholar 

  13. Karathia H, Vilaprinyo E, Sorribas A et al (2011) Saccharomyces cerevisiae as a model organism: a comparative study. PLoS One 6:e16015

    Article  CAS  Google Scholar 

  14. Tenreiro S, Fleming Outeiro T (2010) Simple is good: yeast models of neurodegeneration. FEMS Yeast Res 10:970–979

    Article  CAS  Google Scholar 

  15. Matuo R, Sousa FG, Soares DG et al (2012) Saccharomyces cerevisiae as a model system to study the response to anticancer agents. Cancer Chemother Pharmacol 70:491–502

    Article  CAS  Google Scholar 

  16. Hartwell LH, Szankasi P, Roberts CJ et al (1997) Integrating genetic approaches into the discovery of anticancer drugs. Science 278:1064–1068

    Article  CAS  Google Scholar 

  17. Winzeler EA, Shoemaker DD, Astromoff A et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    Article  CAS  Google Scholar 

  18. Amberg DC, Burke DJ, Strathern JN (2005) Methods in yeast genetics: a cold spring harbor laboratory course manual. John Inglis, Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  19. De la Torre-Ruiz MA, Pujol N, Sundaran V (2015) Coping with oxidative stress. The yeast model. Curr Drug Targets 16:2–12

    Article  CAS  Google Scholar 

  20. Niedźwiecka K, Dyląg M, Augustyniak D et al (2016) Glutathione may have implications in the design of 3-bromopyruvate treatment protocols for both fungal and algal infections as well as multiple myeloma. Oncotarget 7:65614–65626

    Article  Google Scholar 

  21. Lis P, Zarzycki M, Ko YH et al (2012) Transport and cytotoxicity of the anticancer drug 3-bromopyruvate in the yeast Saccharomyces cerevisiae. J Bioenerg Biomembr 44:155–161

    Article  CAS  Google Scholar 

  22. Majkowska-Skrobek G, Augustyniak D, Lis P et al (2014) Killing multiple myeloma cells with the small molecule 3-bromopyruvate: implications for therapy. Anti-Cancer Drugs 25:673–682

    Article  CAS  Google Scholar 

  23. Pedersen PL, Mathupala S, Rempel A et al (2002) Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim Biophys Acta 1555:14–20

    Article  CAS  Google Scholar 

  24. Diaz-Ruiz R, Uribe-Carvajal S, Devin A et al (2009) Tumor cell energy metabolism and its common features with yeast metabolism. Biochim Biophys Acta 1796:252–265

    CAS  PubMed  Google Scholar 

  25. Coutinho I, Pereira G, Leão M et al (2009) Differential regulation of p53 function by protein kinase C isoforms revealed by a yeast cell system. FEBS Lett 583:3582–3588

    Article  CAS  Google Scholar 

  26. Diaz-Ruiz R, Rigoulet M, Devin A (2011) The Warburg and Crabtree effects: on the origin of cancer cell energy metabolism and of yeast glucose repression. Biochim Biophys Acta 1807:568–576

    Article  CAS  Google Scholar 

  27. Burz C, Berindan-Neagoe I, Balacescu O et al (2009) Apoptosis in cancer: key molecular signaling pathways and therapy targets. Acta Oncol 48:811–821

    Article  CAS  Google Scholar 

  28. Ko YH, Smith BL, Wang Y et al (2004) Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun 324:269–275

    Article  CAS  Google Scholar 

  29. Pedersen PL (2012) 3-Bromopyruvate (3BP) a fast acting, promising, powerful, specific, and effective “small molecule” anti-cancer agent taken from labside to bedside: introduction to a special issue. J Bioenerg Biomembr 44:1–6

    Article  CAS  Google Scholar 

  30. Pedersen PL (2012) Mitochondria in relation to cancer metastasis: introduction to a mini-review series. J Bioenerg Biomembr 44:615–617

    Article  CAS  Google Scholar 

  31. Lis P, Dyląg M, Niedźwiecka K et al (2016) The HK2 dependent “Warburg effect” and mitochondrial oxidative phosphorylation in cancer:targets for effective therapy with 3-Bromopyruvate. Molecules 21:1–15

    Article  Google Scholar 

  32. Hartwell LH (2004) Yeast and cancer. Biosci Rep 24:523–544

    Article  Google Scholar 

  33. Ko YH, Verhoeven HA, Lee MJ et al (2012) A translational study “case report” on the small molecule “energy blocker” 3-bromopyruvate (3BP) as a potent anticancer agent: from bench side to bedside. J Bioenerg Biomembr 44:163–170

    Article  CAS  Google Scholar 

  34. Kimmich GA, Randles J, Brand JS (1975) Assay of picomole amounts of ATP, ADP and AMP using the luciferase enzyme system. Anal Biochem 69(1):187–206

    Article  CAS  Google Scholar 

  35. Cal-Bakowska M, Litwin I, Bocer T et al (2011) The Swi2-Snf2-like protein Uls1 is involved in replication stress response. Nucleic Acids Res 39:8765–8777

    Article  CAS  Google Scholar 

  36. Woodward JR, Cirillo VP, Edmunds LN Jr (1978) Light effects in yeast: inhibition by visible light of growth and transport in Saccharomyces cerevisiae grown at low temperatures. J Bacteriol 133:692–698

    Article  CAS  Google Scholar 

  37. Gregory R, Stuart Janine H, Santos Micheline K et al (2006) Mitochondrial and nuclear DNA defects in Saccharomyces cerevisiae with mutations in DNA polymerase γ associated with progressive external ophthalmoplegia. Hum Mol Genet 15:363–374

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanisław Ułaszewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cal, M., Matyjaszczyk, I., Ułaszewski, S. (2019). Yeast Genome Screening and Methods for the Discovery of Metabolic Pathways Involved in a Phenotypic Response to Anticancer Agents. In: Oliver, S.G., Castrillo, J.I. (eds) Yeast Systems Biology. Methods in Molecular Biology, vol 2049. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9736-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9736-7_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9735-0

  • Online ISBN: 978-1-4939-9736-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics