Skip to main content

Evolving Methods in Defining the Role of RNA in RNP Assembly

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

The causative connection between aberrant liquid–liquid phase separation (LLPS) of ribonucleoprotein (RNP) granules and neurodegeneration is well known. LLPS driven by intrinsically disordered proteins has been intensely investigated. However, the role of RNA and RNA–protein interaction in RNP granule assembly, properties, maintenance, and eventual onset and progression of neurodegeneration remains poorly understood. A critical hurdle in addressing this question is the shortcomings of currently employed ensemble methods in probing very early-stage molecular events. Here, we present a unique combination of single-molecule biophysical and ensemble methods that can dissect single protein–RNA interaction. The advantage of this approach is that it provides a potential tool to identify early-stage molecular defects that may contribute to the onset of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Guo, L., & Shorter, J. (2015). It’s raining liquids: RNA tunes viscoelasticity and dynamics of membraneless organelles. Molecular Cell, 60, 189–192.

    Article  Google Scholar 

  2. Larson, A. G., Elnatan, D., Keenen, M. M., Trnka, M. J., Johnston, J. B., Burlingame, A. L., et al. (2017). Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature, 547, 236–240.

    Article  ADS  Google Scholar 

  3. Strom, A. R., Emelyanov, A. V., Mir, M., Fyodorov, D. V., Darzacq, X., & Karpen, G. H. (2017). Phase separation drives heterochromatin domain formation. Nature, 547, 241–245.

    Article  ADS  Google Scholar 

  4. Woodruff, J. B., Ferreira Gomes, B., Widlund, P. O., Mahamid, J., Honigmann, A., & Hyman, P. O. (2017). The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin. Cell, 169, 1066–1077 e1010.

    Google Scholar 

  5. Spector, D. L. (2006). SnapShot: Cellular bodies. Cell, 127, 1071.

    Article  Google Scholar 

  6. Protter, D. S., & Parker, R. (2016). Principles and properties of stress granules. Trends in Cell Biology, 26, 668–679.

    Article  Google Scholar 

  7. Updike, D., & Strome, S. (2010). P granule assembly and function in Caenorhabditis elegans germ cells. Journal of Andrology, 31, 53–60.

    Article  Google Scholar 

  8. Anderson, P., & Kedersha, N. (2006). RNA granules. The Journal of Cell Biology, 172, 803–808.

    Article  Google Scholar 

  9. Jain, S., Wheeler, J. R., Walters, R. W., Agrawal, A., Barsic, A., & Parker, R. (2016). ATPase-modulated stress granules contain a diverse proteome and substructure. Cell, 164, 487–498.

    Article  Google Scholar 

  10. Aulas, A., & Vande Velde, C. (2015). Alterations in stress granule dynamics driven by TDP-43 and FUS: A link to pathological inclusions in ALS? Frontiers in Cellular Neuroscience, 9, 423.

    Article  Google Scholar 

  11. Patel, A., Lee, H. O., Jawerth, L., Maharana, S., Jahnel, M., Hein, M. Y., et al. (2015). A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell, 162, 1066–1077.

    Article  Google Scholar 

  12. Aulas, A., Fay, M. M., Lyons, S. M., Achorn, C. A., Kedersha, N., Anderson, P., et al. (2017). Stress-specific differences in assembly and composition of stress granules and related foci. Journal of Cell Science, 130, 927–937.

    Article  Google Scholar 

  13. Dewey, C. M., Cenik, B., Sephton, C. F., Dries, D. R., Mayer, P., 3rd, Good, S. K., et al. (2011). TDP-43 is directed to stress granules by sorbitol, a novel physiological osmotic and oxidative stressor. Molecular and Cellular Biology, 31, 1098–1108.

    Article  Google Scholar 

  14. Kato, M., Han, T. W., Xie, S., Shi, K., Du, X., Wu, L. C., et al. (2012). Cell-free formation of RNA granules: Low complexity sequence domains form dynamic fibers within hydrogels. Cell, 149, 753–767.

    Article  Google Scholar 

  15. Brangwynne, C. P., Eckmann, C. R., Courson, D. S., Rybarska, A., Hoege, C., Gharakhani, J., et al. (2009). Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science, 324, 1729–1732.

    Article  ADS  Google Scholar 

  16. Kroschwald, S., Maharana, S., Mateju, D., Malinovska, L., Nuske, E., Poser, I., et al. (2015). Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules. eLife, 4, e06807.

    Google Scholar 

  17. Patel, A., Malinovska, L., Saha, S., Wang, J., Alberti, S., Krishnan, Y., et al. (2017). ATP as a biological hydrotrope. Science, 356, 753–756.

    Article  ADS  Google Scholar 

  18. Schwartz, J. C., Wang, X., Podell, E. R., & Cech, T. R. (2013). RNA seeds higher-order assembly of FUS protein. Cell Reports, 5, 918–925.

    Article  Google Scholar 

  19. Daigle, J. G., Lanson, N. A., Jr., Smith, R. B., Casci, I., Maltare, A., Monaghan, J., et al. (2013). RNA-binding ability of FUS regulates neurodegeneration, cytoplasmic mislocalization and incorporation into stress granules associated with FUS carrying ALS-linked mutations. Human Molecular Genetics, 22, 1193–1205.

    Article  Google Scholar 

  20. Voigt, A., Herholz, D., Fiesel, F. C., Kaur, K., Muller, D., Karsten, P., et al. (2010). TDP-43-mediated neuron loss in vivo requires RNA-binding activity. PloS One, 5, e12247.

    Article  ADS  Google Scholar 

  21. Zhang, H., Elbaum-Garfinkle, S., Langdon, E. M., Taylor, N., Occhipinti, P., Bridges, A. A., et al. (2015). RNA controls PolyQ protein phase transitions. Molecular Cell, 60, 220–230.

    Article  Google Scholar 

  22. Langdon, E. M., Qiu, Y., Ghanbari Niaki, A., McLaughlin, G. A., Weidmann, C., Gerbich, T. M., et al. (2018). mRNA structure determines specificity of a polyQ-driven phase separation. Science.

    Google Scholar 

  23. DeJesus-Hernandez, M., Mackenzie, I. R., Boeve, B. F., Boxer, A. L., Baker, M., Rutherford, N. J., et al. (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron, 72, 245–256.

    Article  Google Scholar 

  24. Renton, A. E., Majounie, E., Waite, A., Simon-Sanchez, J., Rollinson, S., Gibbs, J. R., et al. (2011). A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron, 72, 257–268.

    Google Scholar 

  25. Jain, A., & Vale, R. D. (2017). RNA phase transitions in repeat expansion disorders. Nature, 546, 243–247.

    Article  ADS  Google Scholar 

  26. Elbaum-Garfinkle, S., Kim, Y., Szczepaniak, K., Chen, C. C., Eckmann, C. R., Myong, S., et al. (2015). The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proceedings of the National Academy of Sciences of the United States of America, 112, 7189–7194.

    Article  ADS  Google Scholar 

  27. Maharana, S., Wang, J., Papadopoulos, D. K., Richter, D., Pozniakovsky, A., Poser, I., et al. (2018). RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science.

    Google Scholar 

  28. Wheeler, J. R., Matheny, T., Jain, S., Abrisch, R., & Parker, R. (2016). Distinct stages in stress granule assembly and disassembly. eLife, 5.

    Google Scholar 

  29. Li, Y. R., King, O. D., Shorter, J., & Gitler, A. D. (2013). Stress granules as crucibles of ALS pathogenesis. The Journal of Cell Biology, 201, 361–372.

    Article  Google Scholar 

  30. Lagier-Tourenne, C., Polymenidou, M., & Cleveland, D. W. (2010). TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Human Molecular Genetics, 19, R46–R64.

    Article  Google Scholar 

  31. Ishiguro, T., Sato, N., Ueyama, M., Fujikake, N., Sellier, C., Kanegami, A., et al. (2017). Regulatory role of RNA chaperone TDP-43 for RNA misfolding and repeat-associated translation in SCA31. Neuron, 94, 108–124 e107.

    Article  Google Scholar 

  32. Mateju, D., Franzmann, T. M., Patel, A., Kopach, A., Boczek, E. E., Maharana, S., et al. (2017). An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function. EMBO Journal, 36, 1669–1687.

    Article  Google Scholar 

  33. Alberti, S., Mateju, D., Mediani, L., & Carra, S. (2017). Granulostasis: Protein quality control of RNP granules. Frontiers in Molecular Neuroscience, 10, 84.

    Article  Google Scholar 

  34. Lavut, A., & Raveh, D. (2012). Sequestration of highly expressed mRNAs in cytoplasmic granules, P-bodies, and stress granules enhances cell viability. PLoS Genetics, 8, e1002527.

    Article  Google Scholar 

  35. Burke, K. A., Janke, A. M., Rhine, C. L., & Fawzi, N. L. (2015). Residue-by-residue view of in vitro FUS granules that bind the C-terminal domain of RNA polymerase II. Molecular Cell, 60, 231–241.

    Article  Google Scholar 

  36. Kim, Y., & Myong, S. (2016). RNA remodeling activity of DEAD box proteins tuned by protein concentration, RNA length, and ATP. Molecular Cell, 63, 865–876.

    Article  Google Scholar 

  37. Wheeler, J. R., Jain, S., Khong, A, & Parker, R. (2017). Isolation of yeast and mammalian stress granule cores. Methods.

    Google Scholar 

  38. Roy, R., Hohng, S., & Ha, T. (2008). A practical guide to single-molecule FRET. Nature Methods, 5, 507–516.

    Article  Google Scholar 

  39. Hellman, L. M., & Fried, M. G. (2007). Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nature Protocols, 2, 1849–1861.

    Article  Google Scholar 

  40. Riback, J. A., Katanski, C. D., Kear-Scott, J. L., Pilipenko, E. V., Rojek, A. E., Sosnick, T. R., & Drummond, D. A. (2017). Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell, 168, 1028–1040 e1019.

    Google Scholar 

  41. Jain, A., Liu, R., Ramani, B., Arauz, E., Ishitsuka, Y., Ragunathan, K., et al. (2011). Probing cellular protein complexes using single-molecule pull-down. Nature, 473, 484–488.

    Article  ADS  Google Scholar 

  42. Jain, A., Liu, R., Xiang, Y. K., & Ha, T. (2012). Single-molecule pull-down for studying protein interactions. Nature Protocols, 7, 445–452.

    Article  Google Scholar 

  43. Feric, M., Vaidya, N., Harmon, T. S., Mitrea, D. M., Zhu, L., Richardson, T. M., et al. (2016). Coexisting liquid phases underlie nucleolar subcompartments. Cell, 165, 1686–1697.

    Article  Google Scholar 

  44. Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., et al. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642–1645.

    Article  ADS  Google Scholar 

  45. Rust, M. J., Bates, M., & Zhuang, X. (2006). Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods, 3, 793–795.

    Article  Google Scholar 

  46. Klar, T. A., & Hell, S. W. (1999). Subdiffraction resolution in far-field fluorescence microscopy. Optics Letters, 24, 954–956.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was supported by Catalyst Research Award from Johns Hopkins University, R01 GM115631 and R01 CA 207342 for all members at Johns Hopkins University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sua Myong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarkar, J., Lee, J.C., Myong, S. (2019). Evolving Methods in Defining the Role of RNA in RNP Assembly. In: Joo, C., Rueda, D. (eds) Biophysics of RNA-Protein Interactions. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9726-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9726-8_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9724-4

  • Online ISBN: 978-1-4939-9726-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics