Skip to main content

19F NMR Spectroscopy for the Analysis of DNA G-Quadruplex Structures Using 19F-Labeled Nucleobase

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2035))

Abstract

G-quadruplex structures have been suggested to be biologically important in processes such as transcription and translation, gene expression and regulation in human cancer cells, and regulation of telomere length. Investigation of G-quadruplex structures associated with biological events is therefore essential to understanding the functions of these molecules. We developed the 19F-labeled nucleobases and introduced them into DNA sequences for the 19F NMR spectroscopy analysis. We present the 19F NMR methodology used in our research group for the study of G-quadruplex structures in vitro and in living cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Xu Y (2011) Chemistry in human telomere biology: structure, function and targeting of telomere DNA/RNA. Chem Soc Rev 40:2719–2740

    Article  CAS  Google Scholar 

  2. Hansel-Hertsch R, Di Antonio M, Balasubramanian S (2017) DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat Rev Mol Cell Biol 18:279–284

    Article  CAS  Google Scholar 

  3. Hirashima K, Seimiya H (2015) Telomeric repeat-containing RNA/G-quadruplex-forming sequences cause genome-wide alteration of gene expression in human cancer cells in vivo. Nucleic Acids Res 43:2022–2032

    Article  CAS  Google Scholar 

  4. Rhodes D, Lipps HJ (2015) G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res 43:8627–8637

    Article  CAS  Google Scholar 

  5. Xu Y, Sato H, Sannohe Y, Shinohara K, Sugiyama H (2008) Stable lariat formation based on a G-quadruplex scaffold. J Am Chem Soc 130:16470–16471

    Article  CAS  Google Scholar 

  6. Xu Y, Ishizuka T, Kurabayashi K, Komiyama M (2009) Consecutive formation of G-quadruplexes in human telomeric-overhang DNA: a protective capping structure for telomere ends. Angew Chem Int Ed 48:7833–7836

    Article  CAS  Google Scholar 

  7. Xu Y, Ishizuka T, Yang J, Ito K, Katada H, Komiyama M, Hayashi T (2012) Oligonucleotide models of telomeric DNA and RNA form a hybrid G-quadruplex structure as a potential component of telomeres. J Biol Chem 287:41787–41796

    Article  CAS  Google Scholar 

  8. Takahama K, Takada A, Tada S, Shimizu M, Sayama K, Kurokawa R, Oyoshi T (2013) Regulation of telomere length by G-quadruplex telomere DNA- and TERRA-binding protein TLS/FUS. Chem Biol 20:341–350

    Article  CAS  Google Scholar 

  9. Wang C, Zhao L, Lu S (2015) Role of TERRA in the regulation of telomere length. Int J Biol Sci 11:316–323

    Article  CAS  Google Scholar 

  10. Simonsson T, Pecinka P, Kubista M (1998) DNA tetraplex formation in the control region of c-myc. Nucleic Acids Res 26:1167–1172

    Article  CAS  Google Scholar 

  11. Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002) Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci U S A 99:11593–11598

    Article  CAS  Google Scholar 

  12. Hershman SG, Chen Q, Lee JY, Kozak ML, Yue P, Wang LS, Johnson FB (2008) Genomic distribution and functional analyses of potential G-quadruplex-forming sequences in Saccharomyces cerevisiae. Nucleic Acids Res 36:144–156

    Article  CAS  Google Scholar 

  13. Ito K, Go S, Komiyama M, Xu Y (2011) Inhibition of translation by small RNA-stabilized mRNA structures in human cells. J Am Chem Soc 133:19153–19159

    Article  CAS  Google Scholar 

  14. Xu Y, Sugiyama H (2006) Formation of the G-quadruplex and i-motif structures in retinoblastoma susceptibility genes (Rb). Nucleic Acids Res 34:949–954

    Article  CAS  Google Scholar 

  15. Paeschke K, Capra JA, Zakian VA (2011) DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 145:678–691

    Article  CAS  Google Scholar 

  16. Besnard E, Babled A, Lapasset L, Milhavet O, Parrinello H, Dantec C, Marin JM, Lemaitre JM (2012) Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat Struct Mol Biol 19:837–844

    Article  CAS  Google Scholar 

  17. Vannier JB, Sandhu S, Petalcorin MI, Wu X, Nabi Z, Ding H, Boulton SJ (2013) RTEL1 is a replisome-associated helicase that promotes telomere and genome-wide replication. Science 342:239–242

    Article  CAS  Google Scholar 

  18. Valton AL, Hassan-Zadeh V, Lema I, Boggetto N, Alberti P, Saintome C, Riou JF, Prioleau MN (2014) G4 motifs affect origin positioning and efficiency in two vertebrate replicators. EMBO J 33:732–746

    Article  CAS  Google Scholar 

  19. Valton AL, Prioleau MN (2016) G-quadruplexes in DNA replication: a problem or a necessity? Trends Genet 32:697–706

    Article  CAS  Google Scholar 

  20. Hurley LH (2002) DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer 2:188–200

    Article  CAS  Google Scholar 

  21. Neidle S, Parkinson G (2002) Telomere maintenance as a target for anticancer drug discovery. Nat Rev Drug Discov 1:383–393

    Article  CAS  Google Scholar 

  22. De Cian A, Lacroix L, Douarre C, Temime-Smaali N, Trentesaux C, Riou JF, Mergny JL (2008) Targeting telomeres and telomerase. Biochimie 90:131–155

    Article  Google Scholar 

  23. Balasubramanian S, Neidle S (2009) G-quadruplex nucleic acids as therapeutic targets. Curr Opin Chem Biol 13:345–353

    Article  CAS  Google Scholar 

  24. Xu Y, Suzuki Y, Lonnberg T, Komiyama M (2009) Human telomeric DNA sequence-specific cleaving by G-quadruplex formation. J Am Chem Soc 131:2871–2874

    Article  CAS  Google Scholar 

  25. Shinohara K, Sannohe Y, Kaieda S, Tanaka K, Osuga H, Tahara H, Xu Y, Kawase T, Bando T, Sugiyama H (2010) A chiral wedge molecule inhibits telomerase activity. J Am Chem Soc 132:3778–3782

    Article  CAS  Google Scholar 

  26. Xu Y, Ito K, Suzuki Y, Komiyama M (2010) A 6-mer photocontrolled oligonucleotide as an effective telomerase inhibitor. J Am Chem Soc 132:631–637

    Article  CAS  Google Scholar 

  27. Collie GW, Parkinson GN (2011) The application of DNA and RNA G-quadruplexes to therapeutic medicines. Chem Soc Rev 40:5867–5892

    Article  CAS  Google Scholar 

  28. Zhao C, Wu L, Ren J, Xu Y, Qu X (2013) Targeting human telomeric higher-order DNA: dimeric G-quadruplex units serve as preferred binding site. J Am Chem Soc 135:18786–18789

    Article  CAS  Google Scholar 

  29. Lin C, Yang D (2017) Human telomeric G-quadruplex structures and G-quadruplex-interactive compounds. Methods Mol Biol 1587:171–196

    Article  CAS  Google Scholar 

  30. Neidle S (2017) Quadruplex nucleic acids as targets for anticancer therapeutics. Nat Rev Chem 1:0041

    Article  CAS  Google Scholar 

  31. Wang Y, Patel DJ (1993) Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure 1:263–282

    Article  CAS  Google Scholar 

  32. Parkinson GN, Lee MP, Neidle S (2002) Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417:876–880

    Article  CAS  Google Scholar 

  33. Ambrus A, Chen D, Dai J, Bialis T, Jones RA, Yang D (2006) Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res 34:2723–2735

    Article  CAS  Google Scholar 

  34. Luu KN, Phan AT, Kuryavyi V, Lacroix L, Patel DJ (2006) Structure of the human telomere in K+ solution: an intramolecular (3 + 1) G-quadruplex scaffold. J Am Chem Soc 128:9963–9970

    Article  CAS  Google Scholar 

  35. Xu Y, Noguchi Y, Sugiyama H (2006) The new models of the human telomere d[AGGG(TTAGGG)3] in K+ solution. Bioorg Med Chem 14:5584–5591

    Article  CAS  Google Scholar 

  36. Phan AT, Luu KN, Patel DJ (2006) Different loop arrangements of intramolecular human telomeric (3 + 1) G-quadruplexes in K+ solution. Nucleic Acids Res 34:5715–5719

    Article  CAS  Google Scholar 

  37. Phan AT, Kuryavyi V, Luu KN, Patel DJ (2007) Structure of two intramolecular G-quadruplexes formed by natural human telomere sequences in K+ solution. Nucleic Acids Res 35:6517–6525

    Article  CAS  Google Scholar 

  38. Avino A, Fabrega C, Tintore M, Eritja R (2012) Thrombin binding aptamer, more than a simple aptamer: chemically modified derivatives and biomedical applications. Curr Pharm Des 18:2036–2047

    Article  CAS  Google Scholar 

  39. Deng B, Lin Y, Wang C, Li F, Wang Z, Zhang H, Li XF, Le XC (2014) Aptamer binding assays for proteins: the thrombin example-a review. Anal Chim Acta 837:1–15

    Article  CAS  Google Scholar 

  40. Esposito V, Scuotto M, Capuozzo A, Santamaria R, Varra M, Mayol L, Virgilio A, Galeone A (2014) A straightforward modification in the thrombin binding aptamer improving the stability, affinity to thrombin and nuclease resistance. Org Biomol Chem 12:8840–8843

    Article  CAS  Google Scholar 

  41. Virgilio A, Petraccone L, Scuotto M, Vellecco V, Bucci M, Mayol L, Varra M, Esposito V, Galeone A (2014) 5-Hydroxymethyl-2′-deoxyuridine residues in the thrombin binding aptamer: investigating anticoagulant activity by making a tiny chemical modification. Chembiochem 15:2427–2434

    Article  CAS  Google Scholar 

  42. Scuotto M, Rivieccio E, Varone A, Corda D, Bucci M, Vellecco V, Cirino G, Virgilio A, Esposito V, Galeone A, Borbone N, Varra M, Mayol L (2015) Site specific replacements of a single loop nucleoside with a dibenzyl linker may switch the activity of TBA from anticoagulant to antiproliferative. Nucleic Acids Res 43:7702–7716

    Article  CAS  Google Scholar 

  43. Virgilio A, Petraccone L, Vellecco V, Bucci M, Varra M, Irace C, Santamaria R, Pepe A, Mayol L, Esposito V, Galeone A (2015) Site-specific replacement of the thymine methyl group by fluorine in thrombin binding aptamer significantly improves structural stability and anticoagulant activity. Nucleic Acids Res 43:10602–10611

    Article  CAS  Google Scholar 

  44. Macaya RF, Schultze P, Smith FW, Roe JA, Feigon J (1993) Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc Natl Acad Sci U S A 90:3745–3749

    Article  CAS  Google Scholar 

  45. Kelly JA, Feigon J, Yeates TO (1996) Reconciliation of the X-ray and NMR structures of the thrombin-binding aptamer d(GGTTGGTGTGGTTGG). J Mol Biol 256:417–422

    Article  CAS  Google Scholar 

  46. Russo Krauss I, Merlino A, Giancola C, Randazzo A, Mazzarella L, Sica F (2011) Thrombin-aptamer recognition: a revealed ambiguity. Nucleic Acids Res 39:7858–7867

    Article  CAS  Google Scholar 

  47. Phan AT, Patel DJ (2003) Two-repeat human telomeric d(TAGGGTTAGGGT) sequence forms interconverting parallel and antiparallel G-quadruplexes in solution: distinct topologies, thermodynamic properties, and folding/unfolding kinetics. J Am Chem Soc 125:15021–15027

    Article  CAS  Google Scholar 

  48. Xu Y, Suzuki Y, Komiyama M (2009) Click chemistry for the identification of G-quadruplex structures: discovery of a DNA-RNA G-quadruplex. Angew Chem Int Ed 48:3281–3284

    Article  CAS  Google Scholar 

  49. Xu Y, Suzuki Y, Ishizuka T, Xiao CD, Liu X, Hayashi T, Komiyama M (2014) Finding a human telomere DNA-RNA hybrid G-quadruplex formed by human telomeric 6-mer RNA and 16-mer DNA using click chemistry: a protective structure for telomere end. Bioorg Med Chem 22:4419–4421

    Article  CAS  Google Scholar 

  50. Zhang N, Phan AT, Patel DJ (2005) (3 + 1) assembly of three human telomeric repeats into an asymmetric dimeric G-quadruplex. J Am Chem Soc 127:17277–17285

    Article  CAS  Google Scholar 

  51. Zhou L, Rajabzadeh M, Traficante DD, Cho BP (1997) Conformational heterogeneity of arylamine-modified DNA: 19F NMR evidence. J Am Chem Soc 119:5384–5389

    Article  CAS  Google Scholar 

  52. Hammann C, Norman DG, Lilley DM (2001) Dissection of the ion-induced folding of the hammerhead ribozyme using 19F NMR. Proc Natl Acad Sci U S A 98:5503–5508

    Article  CAS  Google Scholar 

  53. Barhate NB, Barhate RN, Cekan P, Drobny G, Sigurdsson ST (2008) A nonafluoro nucleoside as a sensitive 19F NMR probe of nucleic acid conformation. Org Lett 10:2745–2747

    Article  CAS  Google Scholar 

  54. Graber D, Moroder H, Micura R (2008) 19F NMR spectroscopy for the analysis of RNA secondary structure populations. J Am Chem Soc 130:17230–17231

    Article  CAS  Google Scholar 

  55. Kiviniemi A, Virta P (2010) Characterization of RNA invasion by 19F NMR spectroscopy. J Am Chem Soc 132:8560–8562

    Article  CAS  Google Scholar 

  56. Sakamoto T, Hayakawa H, Fujimoto K (2011) Development of a potassium ion sensor for 19F magnetic resonance chemical shift imaging based on fluorine-labeled thrombin aptamer. Chem Lett 40:720–721

    Article  CAS  Google Scholar 

  57. Fauster K, Kreutz C, Micura R (2012) 2′-SCF3 uridine-a powerful label for probing structure and function of RNA by 19F NMR spectroscopy. Angew Chem Int Ed 51:13080–13084

    Article  CAS  Google Scholar 

  58. Lombès T, Moumné R, Larue V, Prost E, Catala M, Lecourt T, Dardel F, Micouin L, Tisné C (2012) Investigation of RNA-ligand interactions by 19F NMR spectroscopy using fluorinated probes. Angew Chem Int Ed 51:9530–9534

    Article  Google Scholar 

  59. Chen H, Viel S, Ziarelli F, Peng L (2013) 19F NMR: a valuable tool for studying biological events. Chem Soc Rev 42:7971–7982

    Article  CAS  Google Scholar 

  60. Tanabe K, Tsuda T, Ito T, Nishimoto S (2013) Probing DNA mismatched and bulged structures by using 19F NMR spectroscopy and oligodeoxynucleotides with an 19F-labeled nucleobase. Chem A Eur J 19:15133–15140

    Article  CAS  Google Scholar 

  61. Zhao C, Devany M, Greenbaum NL (2014) Measurement of chemical exchange between RNA conformers by 19F NMR. Biochem Biophys Res Commun 453:692–695

    Article  CAS  Google Scholar 

  62. Bao HL, Ishizuka T, Sakamoto T, Fujimoto K, Uechi T, Kenmochi N, Xu Y (2017) Characterization of human telomere RNA G-quadruplex structures in vitro and in living cells using 19F NMR spectroscopy. Nucleic Acids Res 45:5501–5511

    Article  CAS  Google Scholar 

  63. Ishizuka T, Zhao PY, Bao HL, Xu Y (2017) A multi-functional guanine derivative for studying the DNA G-quadruplex structure. Analyst 142:4083–4088

    Article  CAS  Google Scholar 

  64. Bao HL, Xu Y (2018) Investigation of higher-order RNA G-quadruplex structures in vitro and in living cells by 19F NMR spectroscopy. Nat Protoc 13:652–665

    Article  CAS  Google Scholar 

  65. Ye Y, Liu X, Xu G, Liu M, Li C (2015) Direct observation of Ca2+-induced calmodulin conformational transitions in intact Xenopus laevis oocytes by 19F NMR spectroscopy. Angew Chem Int Ed 54:5328–5330

    Article  CAS  Google Scholar 

  66. Bao HL, Ishizuka T, Iwanami A, Oyoshi T, Xu Y (2017) A simple and sensitive 19F NMR approach for studying the interaction of RNA G-quadruplex with ligand molecule and protein. Chem Select 2:4170–4175

    CAS  Google Scholar 

  67. Ishizuka T, Yamashita A, Asada Y, Xu Y (2017) Studying DNA G-quadruplex aptamer by 19F NMR. ACS Omega 2:8843–8848

    Article  CAS  Google Scholar 

  68. Bao HL, Xu Y (2019) Hybrid-type and two-tetrad antiparallel telomere DNA G-quadruplex structures in living human cells. Nucleic Acids Res 47:4940–4947

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by JSPS KAKENHI (26288083, 17H03091, 16K17938). Support from the Takeda Science Foundation and Nakatani Foundation Scholarship is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ishizuka, T., Bao, HL., Xu, Y. (2019). 19F NMR Spectroscopy for the Analysis of DNA G-Quadruplex Structures Using 19F-Labeled Nucleobase. In: Yang, D., Lin, C. (eds) G-Quadruplex Nucleic Acids. Methods in Molecular Biology, vol 2035. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9666-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9666-7_26

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9665-0

  • Online ISBN: 978-1-4939-9666-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics