Skip to main content

Targeting G-Quadruplexes with PNA Oligomers

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2035))

Abstract

The growing interest in G-quadruplex (G4) structure and function is motivating intense efforts to develop G4-binding ligands. This chapter describes the design and testing of peptide nucleic acid (PNA) oligomers, which can bind to G4 DNA or RNA in two distinct ways, leading to formation of heteroduplexes or heteroquadruplexes. Guidelines for designing G4-targeting PNAs and step-by-step protocols for characterizing their binding through biophysical or biochemical methods are provided.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gellert M, Lipsett MN, Davies DR (1962) Helix formation by guanylic acid. Proc Natl Acad Sci U S A 48:2013–2018

    Article  CAS  Google Scholar 

  2. Hänsel-Hertsch R, Di Antonio M, Balasubramanian S (2017) DNA G-quadruplexes in the human genome: Detection, functions and therapeutic potential. Nat Rev Mol Cell Biol 18:279–284

    Article  Google Scholar 

  3. Cammas A, Millevoi S (2017) RNA G-quadruplexes: Emerging mechanisms in disease. Nucleic Acids Res 45:1584–1595

    CAS  PubMed  Google Scholar 

  4. Fay MM, Lyons SM, Ivanov P (2017) RNA G-quadruplexes in biology: principles and molecular mechanisms. J Mol Biol 429:2127–2147

    Article  CAS  Google Scholar 

  5. Neidle S (2016) Quadruplex nucleic acids as novel therapeutic targets. J Med Chem 59:5987–6011

    Article  CAS  Google Scholar 

  6. Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1498–1500

    Article  Google Scholar 

  7. Egholm M, Buchardt O, Christensen L, Behrens C, Freier SM, Driver DA, Berg RH, Kim SK, Nordén B, Nielsen PE (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 365:566–568

    Article  CAS  Google Scholar 

  8. Dragulescu-Andrasi A, Rapireddy S, Frezza BM, Gayathri C, Gil RR, Ly DH (2006) A simple gamma-backbone modification preorganizes peptide nucleic acid into a helical structure. J Am Chem Soc 128:10258–10267

    Article  CAS  Google Scholar 

  9. Sahu B, Sacui I, Rapireddy S, Zanotti KJ, Bahal R, Armitage BA, Ly DH (2011) Synthesis and characterization of conformationally preorganized, (R)-diethylene glycol-containing γ-peptide nucleic acids with superior hybridization properties and water solubility. J Org Chem 76:5614–5627

    Article  CAS  Google Scholar 

  10. Murphy CT, Gupta A, Armitage BA, Opresko PL (2014) Hybridization of G-quadruplex-forming peptide nucleic acids to guanine-rich DNA templates inhibits DNA polymerase η extension. Biochemistry 53:5315–5322

    Article  CAS  Google Scholar 

  11. Oyaghire SN, Cherubim CJ, Telmer CA, Martinez JA, Bruchez MP, Armitage BA (2016) RNA G-quadruplex invasion and translation inhibition by antisense γPNA oligomers. Biochemistry 55:1977–1988

    Article  CAS  Google Scholar 

  12. Christensen L, Fitzpatrick R, Gildea B, Petersen KH, Hansen HF, Koch T, Egholm M, Buchardt O, Nielsen PE, Coull J et al (1995) Solid-phase synthesis of peptide nucleic acids. J Pept Sci 3:175–183

    Article  Google Scholar 

  13. Koch, T. (1999) In Nielsen, P. E. and Egholm, M. (eds.), Peptide nucleic acids. Horizon Scientific Press, Norfolk, UK, pp. 21–37

    Google Scholar 

  14. Williamson JR (1994) G-quartet structures in telomeric DNA. Annu Rev Biophys Biomol Struct 23:703–730

    Article  CAS  Google Scholar 

  15. Roy S, Tanious FA, Wilson WD, Ly DH, Armitage BA (2007) High-affinity homologous peptide nucleic acid probes for targeting a quadruplex-forming sequence from a MYC promoter element. Biochemistry 46:10433–10443

    Article  CAS  Google Scholar 

  16. Lusvarghi S, Murphy CT, Roy S, Tanious FA, Sacui I, Wilson WD, Ly DH, Armitage BA (2009) Loop and backbone modifications of PNA improve G quadruplex binding selectivity. J Am Chem Soc 131:18415–18424

    Article  CAS  Google Scholar 

  17. Sacui I, Hsieh W-C, Manna A, Sahu B, Ly DH (2015) Gamma peptide nucleic acids: As orthogonal nucleic acid recognition codes for organizing molecular self-assembly. J Am Chem Soc 137:8603–8610

    Article  CAS  Google Scholar 

  18. Mergny J-L, Phan A-T, Lacroix L (1998) Following G-quartet formation by UV-spectroscopy. FEBS Lett 435:74–78

    Article  CAS  Google Scholar 

  19. Mergny J-L, Li J, Lacroix L, Amrane S, Chaires JB (2005) Thermal difference spectra: A specific signature for nucleic acid structures. Nucleic Acids Res 33:e138

    Article  Google Scholar 

  20. Rodger A, Nordén B (1997) Circular dichroism and linear dichroism. Oxford University Press, Oxford

    Google Scholar 

  21. Vorlícková M, Kejnovská I, Sagi J, Renciuk D, Bednárová K, Motlová J, Kypr J (2012) Circular dichroism and guanine quadruplexes. Methods 57:64–75

    Article  Google Scholar 

  22. Datta B, Schmitt C, Armitage BA (2003) Formation of a PNA2-DNA2 hybrid quadruplex. J Am Chem Soc 125:4111–4118

    Article  CAS  Google Scholar 

  23. Marin VL, Armitage BA (2005) RNA guanine quadruplex invasion by complementary and homologous PNA probes. J Am Chem Soc 127:8032–8033

    Article  CAS  Google Scholar 

  24. Gupta A, Lee L-L, Tanious F, Wilson WD, Ly DH, Armitage BA (2013) Strand invasion of DNA quadruplexes by PNA: Comparison of homologous and complementary hybridization. Chembiochem 14:1476–1484

    Article  CAS  Google Scholar 

  25. Roy S, Zanotti KJ, Murphy CT, Tanious FA, Wilson WD, Ly DH, Armitage BA (2011) Kinetic discrimination in recognition of DNA quadruplex targets by guanine-rich heteroquadruplex-forming PNA probes. Chem Commun 47:8524–8526

    Article  CAS  Google Scholar 

  26. Ratilainen, T. and Nordén, B. (2002) In Nielsen, P. E. (ed.), Peptide nucleic acids. Methods and protocols. Humana Press, Towana, NJ, pp. 59–88

    Google Scholar 

  27. Hamilton SE, Simmons CG, Kathiriya IS, Corey DR (1999) Cellular delivery of peptide nucleic acids and inhibition of human telomerase. Chem Biol 6:343–351

    Article  CAS  Google Scholar 

  28. Koppelhus U, Nielsen PE (2003) Cellular delivery of peptide nucleic acid (PNA). Adv Drug Deliv Rev 55:267–280

    Article  CAS  Google Scholar 

  29. Bahal R, McNeer NA, Ly DH, Saltzman WM, Glazer PM (2013) Nanoparticle for delivery of antisense γPNA oligomers targeting CCR5. Artificial DNA: PNA & XNA 4:49–57

    Article  Google Scholar 

  30. Bahal R, McNeer NA, Quijano E, Liu Y, Sulkowski P, Turchick A, Lu Y-C, Bhunia DC, Manna A, Greiner DL et al (2016) In vivo correction of anaemia in β-thalassemic mice by γPNA-mediated gene editing with nanoparticle delivery. Nat Commun 7:13304

    Article  CAS  Google Scholar 

  31. Demidov VV, Frank-Kamenetskii MD (2004) Two sides of the coin: Affinity and specificity of nucleic acid interactions. Trends Biochem Sci 29:62–71

    Article  CAS  Google Scholar 

  32. Hagihara M, Yamauchi L, Seo A, Yoneda K, Senda M, Nakatani K (2010) Antisense-induced guanine quadruplexes inhibit reverse transcription by HIV-1 reverse transcriptase. J Am Chem Soc 132:11171–11178

    Article  CAS  Google Scholar 

  33. Bhattacharyya D, Nguyen K, Basu S (2014) Rationally induced RNA:DNA G-​quadruplex structures elicit an anticancer effect by inhibiting endogenous eIF-​4E expression. Biochemistry 53:5461–5470

    Article  CAS  Google Scholar 

  34. Marky LA, Breslauer KJ (1987) Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves. Biopolymers 26:1601–1620

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Our work in this area has been supported by the National Institutes of Health (R01 GM58547) and the David Scaife Family Charitable Foundation (141RA01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Armitage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Armitage, B.A. (2019). Targeting G-Quadruplexes with PNA Oligomers. In: Yang, D., Lin, C. (eds) G-Quadruplex Nucleic Acids. Methods in Molecular Biology, vol 2035. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9666-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9666-7_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9665-0

  • Online ISBN: 978-1-4939-9666-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics