Skip to main content

Detection of Cells Translocated with Yersinia Yops in Infected Tissues Using β-Lactamase Fusions

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2010))

Abstract

Development of the TEM-CCF2/4-AM FRET-based system has enabled investigators to track translocation of effector proteins into mammalian cells during infection. This allows for separation of translocated and non-translocated cell populations for further study. Yersinia strains expressing translational Yop-TEM fusions, containing the secretion and translocation signals of a Yop with the TEM-1 portion of β-lactamase, are used to infect mice, tissues isolated from mice, or mammalian cells in culture. Infected and harvested mammalian cells are treated with either CCF2-AM or CCF4-AM, and cleavage of this fluorescent compound by TEM is detected by fluorescence-activated cell sorting (FACS) analysis. A shift from green to blue emission spectra of individual cells is indicative of translocation of a given Yop-TEM fusion protein into the host cell during Yersinia infection due to a disruption in FRET between the two fluors of the compound. In Yersinia, this method has been used to understand Type III secretion dynamics and Yop functions in cells translocated by effectors during infection. Here, we describe how to generate Yop-TEM constructs, and how to detect, quantify, isolate, and study Yop-TEM containing cells in murine tissues during infection and in ex vivo tissues by cell sorting and flow cytometry analysis. In addition, we provide guidance for analyzing TEM-positive cells via a plate reader and fluorescent microscopy.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gemski P, Lazere JR, Casey T et al (1980) Presence of a virulence-associated plasmid in Yersinia pseudotuberculosis. Infect Immun 28:1044–1047

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Portnoy DA, Falkow S (1981) Virulence-associated plasmids from Yersinia enterocolitica and Yersinia pestis. J Bacteriol 148:877–883

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Cornelis GR, Boland A, Boyd AP et al (1998) The virulence plasmid of Yersinia, an antihost genome. Microbiol Mol Biol Rev 62:1315–1352

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Dewoody RS, Merritt PM, Marketon MM (2013) Regulation of the Yersinia type III secretion system: traffic control. Front Cell Infect Microbiol 3:4

    Article  Google Scholar 

  5. Chung LK, Bliska JB (2016) Yersinia versus host immunity: how a pathogen evades or triggers a protective response. Curr Opin Microbiol 29:56–62

    Article  CAS  Google Scholar 

  6. Pinaud L, Sansonetti PJ, Phalipon A (2018) Host cell targeting by enteropathogenic bacteria T3SS effectors. Trends Microbiol 26(4):266–283

    Article  CAS  Google Scholar 

  7. Charpentier X, Oswald E (2004) Identification of the secretion and translocation domain of the enteropathogenic and enterohemorrhagic Escherichia coli effector cif, using TEM-1 beta-lactamase as a new fluorescence-based reporter. J Bacteriol 186:5486–5495

    Article  CAS  Google Scholar 

  8. Zlokarnik G, Negulescu PA, Knapp TE et al (1998) Quantitation of transcription and clonal selection of single living cells with beta-lactamase as reporter. Science 279:84–88

    Article  CAS  Google Scholar 

  9. Marketon MM, DePaolo RW, DeBord KL et al (2005) Plague bacteria target immune cells during infection. Science 309:1739–1741

    Article  CAS  Google Scholar 

  10. Durand EA, Maldonado-Arocho FJ, Castillo C et al (2010) The presence of professional phagocytes dictates the number of host cells targeted for Yop translocation during infection. Cell Microbiol 12:1064–1082

    Article  CAS  Google Scholar 

  11. Köberle M, Klein-Günther A, Schütz M et al (2009) Yersinia enterocolitica targets cells of the innate and adaptive immune system by injection of Yops in a mouse infection model. PLoS Pathog 5:e1000551

    Article  Google Scholar 

  12. Sory MP, Cornelis GR (1994) Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells. Mol Microbiol 14:583–594

    Article  CAS  Google Scholar 

  13. Sutcliffe JG (1978) Nucleotide sequence of the ampicillin resistance gene of Escherichia coli plasmid pBR322. Proc Natl Acad Sci U S A 75:3737–3741

    Article  CAS  Google Scholar 

  14. O’Callaghan CH, Morris A, Kirby SM et al (1972) Novel method for detection of beta-lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother 1:283–288

    Article  Google Scholar 

  15. Maldonado-Arocho FJ, Green C, Fisher ML et al (2013) Adhesins and host serum factors drive yop translocation by Yersinia into professional phagocytes during animal infection. PLoS Pathog 9:e1003415

    Article  CAS  Google Scholar 

  16. Pechous RD, Sivaraman V, Price PA et al (2013) Early host cell targets of Yersinia pestis during primary pneumonic plague. PLoS Pathog 9:e1003679

    Article  Google Scholar 

  17. Paczosa MK, Fisher ML, Maldonado-Arocho FJ et al (2014) Yersinia pseudotuberculosis uses Ail and YadA to circumvent neutrophils by directing Yop translocation during lung infection. Cell Microbiol 16:247–268

    Article  CAS  Google Scholar 

  18. Rolán HG, Durand EA, Mecsas J (2013) Identifying Yersinia YopH-targeted signal transduction pathways that impair neutrophil responses during in vivo murine infection. Cell Host Microbe 14:306–317

    Article  Google Scholar 

  19. Dewoody R, Merritt PM, Marketon MM (2013) YopK controls both rate and fidelity of Yop translocation. Mol Microbiol 87:301–317

    Article  CAS  Google Scholar 

  20. Keller B, Mühlenkamp M, Deuschle E et al (2015) Yersinia enterocolitica exploits different pathways to accomplish adhesion and toxin injection into host cells. Cell Microbiol 17:1179–1204

    Article  CAS  Google Scholar 

  21. Autenrieth SE, Linzer T-R, Hiller C et al (2010) Immune evasion by Yersinia enterocolitica: differential targeting of dendritic cell subpopulations in vivo. PLoS Pathog 6:e1001212

    Article  Google Scholar 

  22. Zhang Y, Tam JW, Mena P et al (2015) CCR2+ inflammatory dendritic cells and translocation of antigen by type III secretion are required for the exceptionally large CD8+ T cell response to the protective YopE69-77 epitope during Yersinia infection. PLoS Pathog 11:e1005167

    Article  Google Scholar 

  23. Houppert AS, Kwiatkowski E, Glass EM et al (2012) Identification of chromosomal genes in Yersinia pestis that influence type III secretion and delivery of Yops into target cells. PLoS One 7:e34039

    Article  CAS  Google Scholar 

  24. Dewoody R, Merritt PM, Houppert AS et al (2011) YopK regulates the Yersinia pestis type III secretion system from within host cells. Mol Microbiol 79:1445–1461

    Article  CAS  Google Scholar 

  25. Harmon DE, Davis AJ, Castillo C et al (2010) Identification and characterization of small-molecule inhibitors of Yop translocation in Yersinia pseudotuberculosis. Antimicrob Agents Chemother 54:3241–3254

    Article  CAS  Google Scholar 

  26. Duncan MC, Wong WR, Dupzyk AJ et al (2014) An NF-κB-based high-throughput screen identifies piericidins as inhibitors of the Yersinia pseudotuberculosis Type III secretion system. Antimicrob Agents Chemother 58:1118–1126

    Article  Google Scholar 

  27. Gargiulo S, Greco A, Gramanzini M et al (2012) Mice anesthesia, analgesia, and care, Part I: anesthetic considerations in preclinical research. ILAR J 53:E55–E69

    Article  Google Scholar 

Download references

Acknowledgments

We thank all previous Mecsas laboratory members who used and optimized this technique in various procedures for their insights and notes. This work was supported by NIH AI R01 AI113166 and R01 AI107055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Mecsas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nguyen, G.T., McCabe, A.L., Fasciano, A.C., Mecsas, J. (2019). Detection of Cells Translocated with Yersinia Yops in Infected Tissues Using β-Lactamase Fusions. In: Vadyvaloo, V., Lawrenz, M. (eds) Pathogenic Yersinia. Methods in Molecular Biology, vol 2010. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9541-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9541-7_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9540-0

  • Online ISBN: 978-1-4939-9541-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics