Skip to main content

Co-infection Assay to Determine Yersinia pestis Competitive Fitness in Fleas

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2010))

Abstract

Co-infection refers to the simultaneous infection of a host by multiple pathogenic organisms. Experimental co-infection studies using a mutant and its isogenic wild type have proven to be profoundly sensitive to analysis of pathogen factor mutation-associated fitness effects in in vivo models of infectious disease. Here we discuss the use of such co-infection experiments in studying the interaction between Yersinia pestis and its flea vector to more sensitively determine the critical bacterial determinants for Y. pestis survival, adaptation, and transmission from fleas. This chapter comprises two main sections, the first detailing how to infect fleas with mutant and wild type Y. pestis strains, and secondly how to process infected fleas and specifically quantify distinct Y. pestis strain burdens per flea. The Y. pestis competitive fitness co-infection model in fleas is insightful in evaluating the consequence of a mutation which may not be obvious in single-strain flea infections where there is less selective pressure.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bland DM, Jarrett CO, Bosio CF, Hinnebusch BJ (2018) Infectious blood source alters early foregut infection and regurgitative transmission of Yersinia pestis by rodent fleas. PLoS Pathog 14(1):e1006859. https://doi.org/10.1371/journal.ppat.1006859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bacot AW, Martin CJ (1914) LXVII. Observations on the mechanism of the transmission of plague by fleas. J Hyg 13(Suppl):423–439

    CAS  PubMed  Google Scholar 

  3. Jarrett CO, Deak E, Isherwood KE, Oyston PC, Fischer ER, Whitney AR, Kobayashi SD, DeLeo FR, Hinnebusch BJ (2004) Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J Infect Dis 190(4):783–792. https://doi.org/10.1086/422695

    Article  PubMed  Google Scholar 

  4. Hinnebusch BJ, Perry RD, Schwan TG (1996) Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 273(5273):367–370

    Article  CAS  Google Scholar 

  5. Sun YC, Koumoutsi A, Jarrett C, Lawrence K, Gherardini FC, Darby C, Hinnebusch BJ (2011) Differential control of Yersinia pestis biofilm formation in vitro and in the flea vector by two c-di-GMP diguanylate cyclases. PLoS One 6(4):e19267. https://doi.org/10.1371/journal.pone.0019267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rebeil R, Jarrett CO, Driver JD, Ernst RK, Oyston PC, Hinnebusch BJ (2013) Induction of the Yersinia pestis PhoP-PhoQ regulatory system in the flea and its role in producing a transmissible infection. J Bacteriol 195(9):1920–1930. https://doi.org/10.1128/JB.02000-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vadyvaloo V, Hinz AK (2015) A LysR-type transcriptional regulator, RovM, senses nutritional cues suggesting that it is involved in metabolic adaptation of Yersinia pestis to the flea gut. PLoS One 10(9):e0137508. https://doi.org/10.1371/journal.pone.0137508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rempe KA, Hinz AK, Vadyvaloo V (2012) Hfq regulates biofilm gut blockage that facilitates flea-borne transmission of Yersinia pestis. J Bacteriol 194(8):2036–2040. https://doi.org/10.1128/JB.06568-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fukuto HS, Svetlanov A, Palmer LE, Karzai AW, Bliska JB (2010) Global gene expression profiling of Yersinia pestis replicating inside macrophages reveals the roles of a putative stress-induced operon in regulating type III secretion and intracellular cell division. Infect Immun 78(9):3700–3715. https://doi.org/10.1128/IAI.00062-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Aoyagi KL, Brooks BD, Bearden SW, Montenieri JA, Gage KL, Fisher MA (2015) LPS modification promotes maintenance of Yersinia pestis in fleas. Microbiology 161(Pt 3):628–638. https://doi.org/10.1099/mic.0.000018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jones RT, Vetter SM, Montenieiri J, Holmes J, Bernhardt SA, Gage KL (2013) Yersinia pestis infection and laboratory conditions alter flea-associated bacterial communities. ISME J 7(1):224–228. https://doi.org/10.1038/ismej.2012.95

    Article  CAS  PubMed  Google Scholar 

  12. Lorange EA, Race BL, Sebbane F, Hinnebusch BJ (2005) Poor vector competence of fleas and the evolution of hypervirulence in Yersinia pestis. J Infect Dis 191(11):1907–1912. https://doi.org/10.1086/429931

    Article  PubMed  Google Scholar 

  13. Fukuto HS, Vadyvaloo V, McPhee JB, Poinar HN, Holmes EC, Bliska JB (2018) A single amino acid change in the response regulator PhoP acquired during Yersinia pestis evolution affects PhoP target gene transcription and polymyxin B susceptibility. J Bacteriol 200(9):e00050-18. https://doi.org/10.1128/JB.00050-18

    Article  PubMed  PubMed Central  Google Scholar 

  14. Surgalla MJ, Beesley ED (1969) Congo red-agar plating medium for detecting pigmentation in Pasteurella pestis. Appl Microbiol 18(5):834–837

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wade SE, Georgi JR (1988) Survival and reproduction of artificially fed cat fleas, Ctenocephalides felis bouche (Siphonaptera: Pulicidae). J Med Entomol 25:186–190

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health Grants 1R21AI097974-01 and 1R01 AI117016-01A1 to V.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viveka Vadyvaloo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lemon, A., Silva-Rohwer, A., Sagawa, J., Vadyvaloo, V. (2019). Co-infection Assay to Determine Yersinia pestis Competitive Fitness in Fleas. In: Vadyvaloo, V., Lawrenz, M. (eds) Pathogenic Yersinia. Methods in Molecular Biology, vol 2010. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9541-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9541-7_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9540-0

  • Online ISBN: 978-1-4939-9541-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics