Skip to main content

Investigating Age-Related Changes in Proliferation and the Cell Division Repertoire of Parenchymal Reactive Astrocytes

  • Protocol
  • First Online:
Astrocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1938))

Abstract

Reactive gliosis is a complicated process involving all types of glial cells and is the therapeutic target of efforts to treat several types of neuropathologies. Parenchymal astrocytes continuously survey their microenvironment to identify even tiny abnormalities in the central nervous system (CNS) homeostasis and react rapidly to brain damage, such as following ischemia, trauma, or neurodegenerative diseases, to prevent propagation of tissue damage. Aging can play causal roles in certain astroglial dysfunctions, however, still little is known to what extent the heterogeneous reaction of astrocytes at the injury site might be impaired over the course of aging. Based on our experience with both in vitro and in vivo experimental paradigms, we describe here in detail the analysis of age-related changes in (1) proliferative response of parenchymal astrocytes within the posttraumatic cerebral cortex grey matter (GM), and (2) repertoire of their cell divisions in adherent cell culture prepared from the injured GM of young and old double transgenic GFAP-mRFP1/(FUCCI)-S/G2/M-mAG-hGeminin mice by single cell time-lapse imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen NJ, Barres BA (2009) Neuroscience: glia—more than just brain glue. Nature 457(7230):675–677. https://doi.org/10.1038/457675a

    Article  CAS  PubMed  Google Scholar 

  2. Herculano-Houzel S (2014) The glia/neuron ratio: how it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia 62(9):1377–1391. https://doi.org/10.1002/glia.22683

    Article  PubMed  Google Scholar 

  3. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35. https://doi.org/10.1007/s00401-009-0619-8

    Article  PubMed  Google Scholar 

  4. Götz M, Sirko S (2013) Potential of glial cells. In: Sell S (ed) Stem cells handbook, 2nd edn. Springer, New York, pp 347–361. https://doi.org/10.1007/978-1-4614-7696-2_24

    Chapter  Google Scholar 

  5. Dimou L, Gotz M (2014) Glial cells as progenitors and stem cells: new roles in the healthy and diseased brain. Physiol Rev 94(3):709–737. https://doi.org/10.1152/physrev.00036.2013

    Article  CAS  PubMed  Google Scholar 

  6. Sirko S, Neitz A, Mittmann T, Horvat-Brocker A, von Holst A, Eysel UT, Faissner A (2009) Focal laser-lesions activate an endogenous population of neural stem/progenitor cells in the adult visual cortex. Brain 132(Pt 8):2252–2264. https://doi.org/10.1093/brain/awp043

    Article  PubMed  Google Scholar 

  7. Sirko S, Behrendt G, Johansson PA, Tripathi P, Costa M, Bek S, Heinrich C, Tiedt S, Colak D, Dichgans M, Fischer IR, Plesnila N, Staufenbiel M, Haass C, Snapyan M, Saghatelyan A, Tsai LH, Fischer A, Grobe K, Dimou L, Gotz M (2013) Reactive glia in the injured brain acquire stem cell properties in response to sonic hedgehog. [corrected]. Cell Stem Cell 12(4):426–439. https://doi.org/10.1016/j.stem.2013.01.019

    Article  CAS  PubMed  Google Scholar 

  8. Wilhelmsson U, Li L, Pekna M, Berthold CH, Blom S, Eliasson C, Renner O, Bushong E, Ellisman M, Morgan TE, Pekny M (2004) Absence of glial fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and improves post-traumatic regeneration. J Neurosci 24(21):5016–5021. https://doi.org/10.1523/JNEUROSCI.0820-04.2004

    Article  CAS  PubMed  Google Scholar 

  9. Sirko S, Irmler M, Gascon S, Bek S, Schneider S, Dimou L, Obermann J, De Souza Paiva D, Poirier F, Beckers J, Hauck SM, Barde YA, Gotz M (2015) Astrocyte reactivity after brain injury-: the role of galectins 1 and 3. Glia 63(12):2340–2361. https://doi.org/10.1002/glia.22898

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32(18):6391–6410. https://doi.org/10.1523/JNEUROSCI.6221-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Buffo A, Rite I, Tripathi P, Lepier A, Colak D, Horn AP, Mori T, Gotz M (2008) Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain. Proc Natl Acad Sci U S A 105(9):3581–3586. https://doi.org/10.1073/pnas.0709002105

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gotz M, Sirko S, Beckers J, Irmler M (2015) Reactive astrocytes as neural stem or progenitor cells: in vivo lineage, in vitro potential, and genome-wide expression analysis. Glia 63(8):1452–1468. https://doi.org/10.1002/glia.22850

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shimada IS, LeComte MD, Granger JC, Quinlan NJ, Spees JL (2012) Self-renewal and differentiation of reactive astrocyte-derived neural stem/progenitor cells isolated from the cortical peri-infarct area after stroke. J Neurosci 32(23):7926–7940. https://doi.org/10.1523/JNEUROSCI.4303-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bardehle S, Kruger M, Buggenthin F, Schwausch J, Ninkovic J, Clevers H, Snippert HJ, Theis FJ, Meyer-Luehmann M, Bechmann I, Dimou L, Gotz M (2013) Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nat Neurosci 16(5):580–586. https://doi.org/10.1038/nn.3371

    Article  CAS  PubMed  Google Scholar 

  15. Simon C, Gotz M, Dimou L (2011) Progenitors in the adult cerebral cortex: cell cycle properties and regulation by physiological stimuli and injury. Glia 59(6):869–881. https://doi.org/10.1002/glia.21156

    Article  PubMed  Google Scholar 

  16. Heimann G, Canhos LL, Frik J, Jager G, Lepko T, Ninkovic J, Gotz M, Sirko S (2017) Changes in the proliferative program limit astrocyte homeostasis in the aged post-traumatic murine cerebral cortex. Cereb Cortex 27(8):4213–4228. https://doi.org/10.1093/cercor/bhx112

    Article  PubMed  Google Scholar 

  17. Frik J, Merl-Pham J, Plesnila N, Mattugini N, Kjell J, Kraska J, Gomez RM, Hauck SM, Sirko S, Gotz M (2018) Cross-talk between monocyte invasion and astrocyte proliferation regulates scarring in brain injury. EMBO Rep 19(5):e45294. https://doi.org/10.15252/embr.201745294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Burda JE, Sofroniew MV (2014) Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81(2):229–248. https://doi.org/10.1016/j.neuron.2013.12.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Buga AM, Sascau M, Pisoschi C, Herndon JG, Kessler C, Popa-Wagner A (2008) The genomic response of the ipsilateral and contralateral cortex to stroke in aged rats. J Cell Mol Med 12(6B):2731–2753. https://doi.org/10.1111/j.1582-4934.2008.00252.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rodriguez-Arellano JJ, Parpura V, Zorec R, Verkhratsky A (2015) Astrocytes in physiological aging and Alzheimer's disease. Neuroscience 323:170–182. https://doi.org/10.1016/j.neuroscience.2015.01.007

    Article  CAS  PubMed  Google Scholar 

  21. Clarke D, Penrose MA, Harvey AR, Rodger J, Bates KA (2017) Low intensity rTMS has sex-dependent effects on the local response of glia following a penetrating cortical stab injury. Exp Neurol 295:233–242. https://doi.org/10.1016/j.expneurol.2017.06.019

    Article  CAS  PubMed  Google Scholar 

  22. Acaz-Fonseca E, Duran JC, Carrero P, Garcia-Segura LM, Arevalo MA (2015) Sex differences in glia reactivity after cortical brain injury. Glia 63(11):1966–1981. https://doi.org/10.1002/glia.22867

    Article  PubMed  Google Scholar 

  23. Tropepe V, Craig CG, Morshead CM, van der Kooy D (1997) Transforming growth factor-alpha null and senescent mice show decreased neural progenitor cell proliferation in the forebrain subependyma. J Neurosci 17(20):7850–7859

    Article  CAS  Google Scholar 

  24. Seki T (2002) Expression patterns of immature neuronal markers PSA-NCAM, CRMP-4 and NeuroD in the hippocampus of young adult and aged rodents. J Neurosci Res 70(3):327–334. https://doi.org/10.1002/jnr.10387

    Article  CAS  PubMed  Google Scholar 

  25. Jin K, Sun Y, Xie L, Batteur S, Mao XO, Smelick C, Logvinova A, Greenberg DA (2003) Neurogenesis and aging: FGF-2 and HB-EGF restore neurogenesis in hippocampus and subventricular zone of aged mice. Aging Cell 2(3):175–183

    Article  CAS  Google Scholar 

  26. Garcia A, Steiner B, Kronenberg G, Bick-Sander A, Kempermann G (2004) Age-dependent expression of glucocorticoid- and mineralocorticoid receptors on neural precursor cell populations in the adult murine hippocampus. Aging Cell 3(6):363–371. https://doi.org/10.1111/j.1474-9728.2004.00130.x

    Article  CAS  PubMed  Google Scholar 

  27. Enwere E, Shingo T, Gregg C, Fujikawa H, Ohta S, Weiss S (2004) Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J Neurosci 24(38):8354–8365. https://doi.org/10.1523/JNEUROSCI.2751-04.2004

    Article  CAS  PubMed  Google Scholar 

  28. Luo J, Daniels SB, Lennington JB, Notti RQ, Conover JC (2006) The aging neurogenic subventricular zone. Aging Cell 5(2):139–152. https://doi.org/10.1111/j.1474-9726.2006.00197.x

    Article  CAS  PubMed  Google Scholar 

  29. Tang H, Wang Y, Xie L, Mao X, Won SJ, Galvan V, Jin K (2009) Effect of neural precursor proliferation level on neurogenesis in rat brain during aging and after focal ischemia. Neurobiol Aging 30(2):299–308. https://doi.org/10.1016/j.neurobiolaging.2007.06.004

    Article  PubMed  Google Scholar 

  30. Amat JA, Ishiguro H, Nakamura K, Norton WT (1996) Phenotypic diversity and kinetics of proliferating microglia and astrocytes following cortical stab wounds. Glia 16(4):368–382. https://doi.org/10.1002/(SICI)1098-1136(199604)16:4<368::AID-GLIA9>3.0.CO;2-W

    Article  CAS  PubMed  Google Scholar 

  31. Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182(3):311–322. https://doi.org/10.1002/(SICI)1097-4652(200003)182:3<311::AID-JCP1>3.0.CO;2-9

    Article  CAS  PubMed  Google Scholar 

  32. Mahadevan LC, Willis AC, Barratt MJ (1991) Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell 65(5):775–783

    Article  CAS  Google Scholar 

  33. Bambakidis NC, Petrullis M, Kui X, Rothstein B, Karampelas I, Kuang Y, Selman WR, LaManna JC, Miller RH (2012) Improvement of neurological recovery and stimulation of neural progenitor cell proliferation by intrathecal administration of sonic hedgehog. J Neurosurg 116(5):1114–1120. https://doi.org/10.3171/2012.1.JNS111285

    Article  CAS  PubMed  Google Scholar 

  34. Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H, Kashiwagi S, Fukami K, Miyata T, Miyoshi H, Imamura T, Ogawa M, Masai H, Miyawaki A (2008) Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132(3):487–498. https://doi.org/10.1016/j.cell.2007.12.033

    Article  CAS  PubMed  Google Scholar 

  35. Wechsler-Reya RJ, Scott MP (1999) Control of neuronal precursor proliferation in the cerebellum by sonic hedgehog. Neuron 22(1):103–114

    Article  CAS  Google Scholar 

  36. Yang R, Wang M, Wang J, Huang X, Yang R, Gao WQ (2015) Cell division mode change mediates the regulation of cerebellar granule neurogenesis controlled by the sonic hedgehog Signaling. Stem Cell Reports 5(5):816–828. https://doi.org/10.1016/j.stemcr.2015.09.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Badan I, Buchhold B, Hamm A, Gratz M, Walker LC, Platt D, Kessler C, Popa-Wagner A (2003) Accelerated glial reactivity to stroke in aged rats correlates with reduced functional recovery. J Cereb Blood Flow Metab 23(7):845–854. https://doi.org/10.1097/01.WCB.0000071883.63724.A7

    Article  CAS  PubMed  Google Scholar 

  38. Copen WA, Schwamm LH, Gonzalez RG, Wu O, Harmath CB, Schaefer PW, Koroshetz WJ, Sorensen AG (2001) Ischemic stroke: effects of etiology and patient age on the time course of the core apparent diffusion coefficient. Radiology 221(1):27–34. https://doi.org/10.1148/radiol.2211001397

    Article  CAS  PubMed  Google Scholar 

  39. Fonarow GC, Reeves MJ, Zhao X, Olson DM, Smith EE, Saver JL, Schwamm LH, Get With the Guidelines-Stroke Steering C, Investigators (2010) Age-related differences in characteristics, performance measures, treatment trends, and outcomes in patients with ischemic stroke. Circulation 121(7):879–891. https://doi.org/10.1161/CIRCULATIONAHA.109.892497

    Article  PubMed  Google Scholar 

  40. Pekna M, Pekny M, Nilsson M (2012) Modulation of neural plasticity as a basis for stroke rehabilitation. Stroke 43(10):2819–2828. https://doi.org/10.1161/STROKEAHA.112.654228

    Article  PubMed  Google Scholar 

  41. Hilsenbeck O, Schwarzfischer M, Skylaki S, Schauberger B, Hoppe PS, Loeffler D, Kokkaliaris KD, Hastreiter S, Skylaki E, Filipczyk A, Strasser M, Buggenthin F, Feigelman JS, Krumsiek J, van den Berg AJ, Endele M, Etzrodt M, Marr C, Theis FJ, Schroeder T (2016) Software tools for single-cell tracking and quantification of cellular and molecular properties. Nat Biotechnol 34(7):703–706. https://doi.org/10.1038/nbt.3626

    Article  CAS  PubMed  Google Scholar 

  42. Nolte C, Matyash M, Pivneva T, Schipke CG, Ohlemeyer C, Hanisch UK, Kirchhoff F, Kettenmann H (2001) GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33(1):72–86

    Article  CAS  Google Scholar 

  43. Hirrlinger PG, Scheller A, Braun C, Quintela-Schneider M, Fuss B, Hirrlinger J, Kirchhoff F (2005) Expression of reef coral fluorescent proteins in the central nervous system of transgenic mice. Mol Cell Neurosci 30(3):291–303. https://doi.org/10.1016/j.mcn.2005.08.011

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swetlana Sirko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Heimann, G., Sirko, S. (2019). Investigating Age-Related Changes in Proliferation and the Cell Division Repertoire of Parenchymal Reactive Astrocytes. In: Di Benedetto, B. (eds) Astrocytes. Methods in Molecular Biology, vol 1938. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9068-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9068-9_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9067-2

  • Online ISBN: 978-1-4939-9068-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics