Skip to main content

Time-Lapse Technologies and 4D Imaging of Kidney Development

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1926))

Abstract

Time-lapse imaging is a technique of frequent imaging and following a course of a process. Because the development of the embryonic kidney can proceed ex vivo after dissection, it is possible to study the morphogenesis by culturing the kidney in the onstage incubator of a microscope and follow the developmental process by imaging. Confocal microscopes and other three-dimensional imaging systems offer the possibility for tracking the development process in four dimensions—3D and the time.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Saxen L, Wartiovaara J (1966) Cell contact and cell adhesion during tissue organization. Int J Cancer 1(3):271–290

    Article  CAS  Google Scholar 

  2. Saxén L, Toivonen S, Vainio T, Korhonen P (1965) Untersuchungen über die tubulogenese der niere. Zeitschrift Für Naturforschung B 20:4. https://doi.org/10.1515/znb-1965-0415

    Article  Google Scholar 

  3. Saxén L (1987) Organogenesis of the kidney, 1st edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Costantini F, Watanabe T, Lu B, Chi X, Srinivas S (2011) Imaging kidney development. Cold Spring Harb Protoc 2011(5):pdb.top109. https://doi.org/10.1101/pdb.top109

    Article  PubMed  Google Scholar 

  5. Lindstrom NO, Chang CH, Valerius MT, Hohenstein P, Davies JA (2015) Node retraction during patterning of the urinary collecting duct system. J Anat 226(1):13–21. https://doi.org/10.1111/joa.12239

    Article  PubMed  Google Scholar 

  6. Combes AN, Lefevre JG, Wilson S, Hamilton NA, Little MH (2016) Cap mesenchyme cell swarming during kidney development is influenced by attraction, repulsion, and adhesion to the ureteric tip. Dev Biol 418(2):297–306. https://doi.org/10.1016/j.ydbio.2016.06.028

    Article  CAS  PubMed  Google Scholar 

  7. Lefevre JG, Chiu HS, Combes AN, Vanslambrouck JM, Ju A, Hamilton NA, Little MH (2017) Self-organisation after embryonic kidney dissociation is driven via selective adhesion of ureteric epithelial cells. Development 144(6):1087–1096. https://doi.org/10.1242/dev.140228

    Article  CAS  PubMed  Google Scholar 

  8. Saarela U, Akram SU, Desgrange A, Rak-Raszewska A, Shan J, Cereghini S et al (2017) Novel fixed z-direction (FiZD) kidney primordia and an organoid culture system for time-lapse confocal imaging. Development 144(6):1113–1117. https://doi.org/10.1242/dev.142950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82(7–8):518–529. https://doi.org/10.1002/mrd.22489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Prunskaite-Hyyrylainen R, Skovorodkin I, Xu Q, Miinalainen I, Shan J, Vainio SJ (2016) Wnt4 coordinates directional cell migration and extension of the mullerian duct essential for ontogenesis of the female reproductive tract. Hum Mol Genet 25(6):1059–1073. https://doi.org/10.1093/hmg/ddv621

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the Suomen Akatemia (Academy of Finland) (206038, 121647, 250900, 260056; Centre of Excellence grant 2012-2017 251314), Munuaissäätiö—Finnish Kidney and Liver Association, the Sigrid Juséliuksen Säätiö, Novo Nordisk, Syöpäjärjestöt (Cancer Society of Finland), the European Community’s Seventh Framework Programme (FP7/2007-2013; grant FP7-HEALTH-F5-2012-INNOVATION-1 EURenOmics 305608), and H2020 Marie Skłodowska-Curie Actions Innovative Training Network “RENALTRACT” Project ID 642937.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ulla Saarela or Ilya Skovorodkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Saarela, U., Skovorodkin, I. (2019). Time-Lapse Technologies and 4D Imaging of Kidney Development. In: Vainio, S. (eds) Kidney Organogenesis. Methods in Molecular Biology, vol 1926. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9021-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9021-4_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9020-7

  • Online ISBN: 978-1-4939-9021-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics