Skip to main content

Assay of Lipid Mixing and Fusion Pore Formation in the Fusion of Yeast Vacuoles

  • Protocol
  • First Online:
SNAREs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1860))

Abstract

Fluorescence de-quenching can be used to analyze membrane lipid mixing during an in vitro fusion reaction. Here we describe a method to measure lipid mixing using vacuolar membranes purified from the yeast Saccharomyces cerevisiae. Labeling the isolated organelles with rhodamine-phosphatidylethanolamine allows to reveal ATP-dependent lipid mixing through fluorescence de-quenching in a spectrofluorometer. Combining this assay with content mixing indicators, such as the fusion-dependent maturation of a luminal vacuolar phosphatase, then permits the detection of hemifusion intermediates and the analysis of the requirements for fusion pore opening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kweon D-H, Kong B, Shin Y-K (2017) Hemifusion in synaptic vesicle cycle. Front Mol Neurosci 10:65. https://doi.org/10.3389/fnmol.2017.00065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Harrison SC (2015) Viral membrane fusion. Virology 479–480:498–507. https://doi.org/10.1016/j.virol.2015.03.043

    Article  CAS  PubMed  Google Scholar 

  3. Jahn R, Scheller RH (2006) SNAREs--engines for membrane fusion. Nat Rev Mol Cell Biol 7:631–643. https://doi.org/10.1038/nrm2002

    Article  CAS  PubMed  Google Scholar 

  4. Jackson MB, Chapman ER (2006) Fusion pores and fusion machines in Ca2+−triggered exocytosis. Annu Rev Biophys Biomol Struct 35:135–160. https://doi.org/10.1146/annurev.biophys.35.040405.101958

    Article  CAS  PubMed  Google Scholar 

  5. Chernomordik LV, Zimmerberg J, Kozlov MM (2006) Membranes of the world unite! J Cell Biol 175:201–207. https://doi.org/10.1083/jcb.200607083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Spessott WA, Sanmillan ML, McCormick ME et al (2017) SM protein Munc18-2 facilitates transition of Syntaxin 11-mediated lipid mixing to complete fusion for T-lymphocyte cytotoxicity. Proc Natl Acad Sci U S A 114(11):E2176. https://doi.org/10.1073/pnas.1617981114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Risselada HJ, Bubnis G, Grubmüller H (2014) Expansion of the fusion stalk and its implication for biological membrane fusion. Proc Natl Acad Sci U S A 111:11043–11048. https://doi.org/10.1073/pnas.1323221111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lai Y, Diao J, Liu Y et al (2013) Fusion pore formation and expansion induced by Ca2+ and synaptotagmin 1. Proc Natl Acad Sci U S A 110:1333–1338. https://doi.org/10.1073/pnas.1218818110

    Article  PubMed  PubMed Central  Google Scholar 

  9. Diao J, Grob P, Cipriano DJ et al (2012) Synaptic proteins promote calcium-triggered fast transition from point contact to full fusion. elife 1:e00109. https://doi.org/10.7554/eLife.00109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Reese C, Mayer A (2005) Transition from hemifusion to pore opening is rate limiting for vacuole membrane fusion. J Cell Biol 171:981–990. https://doi.org/10.1083/jcb.200510018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mayer A (1999) Intracellular membrane fusion: SNAREs only? Curr Opin Cell Biol 11:447–452. https://doi.org/10.1016/S0955-0674(99)80064-7

    Article  CAS  PubMed  Google Scholar 

  12. Dennison SM, Bowen ME, Brunger AT, Lentz BR (2006) Neuronal SNAREs do not trigger fusion between synthetic membranes but do promote PEG-mediated membrane fusion. Biophys J 90:1661–1675. https://doi.org/10.1529/biophysj.105.069617

    Article  CAS  PubMed  Google Scholar 

  13. Chen X, Araç D, Wang T-M et al (2006) SNARE-mediated lipid mixing depends on the physical state of the vesicles. Biophys J 90:2062–2074. https://doi.org/10.1529/biophysj.105.071415

    Article  CAS  PubMed  Google Scholar 

  14. Zick M, Wickner W (2016) Improved reconstitution of yeast vacuole fusion with physiological SNARE concentrations reveals an asymmetric Rab(GTP) requirement. Mol Biol Cell 27:2590–2597. https://doi.org/10.1091/mbc.E16-04-0230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zick M, Orr A, Schwartz ML et al (2015) Sec17 can trigger fusion of trans-SNARE paired membranes without Sec18. PNAS 112:E2290–E2297. https://doi.org/10.1073/pnas.1506409112

    Article  CAS  PubMed  Google Scholar 

  16. Zick M, Stroupe C, Orr A et al (2014) Membranes linked by trans-SNARE complexes require lipids prone to non-bilayer structure for progression to fusion. elife 3:e01879

    Article  Google Scholar 

  17. Brunger AT, Cipriano DJ, Diao J (2015) Towards reconstitution of membrane fusion mediated by SNAREs and other synaptic proteins. Crit Rev Biochem Mol Biol 50:231–241. https://doi.org/10.3109/10409238.2015.1023252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dürr M, Boller T, Wiemken A (1975) Polybase induced lysis of yeast spheroplasts. Arch Microbiol 105:319–327. https://doi.org/10.1007/BF00447152

    Article  PubMed  Google Scholar 

  19. Boller T, Dürr M, Wiemken A (1975) Characterization of a specific transport system for arginine in isolated yeast vacuoles. Eur J Biochem 54:81–91

    Article  CAS  Google Scholar 

  20. Ostrowicz CW, Meiringer CTA, Ungermann C (2008) Yeast vacuole fusion: a model system for eukaryotic endomembrane dynamics. Autophagy 4:5–19

    Article  CAS  Google Scholar 

  21. Wickner W (2002) Yeast vacuoles and membrane fusion pathways. EMBO J 21:1241–1247. https://doi.org/10.1093/emboj/21.6.1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Reese C, Heise F, Mayer A (2005) Trans-SNARE pairing can precede a hemifusion intermediate in intracellular membrane fusion. Nature 436:410–414. https://doi.org/10.1038/nature03722

    Article  CAS  PubMed  Google Scholar 

  23. Pieren M, Schmidt A, Mayer A (2010) The SM protein Vps33 and the t-SNARE H(abc) domain promote fusion pore opening. Nat Struct Mol Biol 17:710–717. https://doi.org/10.1038/nsmb.1809

    Article  CAS  PubMed  Google Scholar 

  24. Pieren M, Desfougères Y, Michaillat L et al (2015) Vacuolar SNARE protein transmembrane domains serve as nonspecific membrane anchors with unequal roles in lipid mixing. J Biol Chem 290:12821–12832. https://doi.org/10.1074/jbc.M115.647776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. D’Agostino M, Risselada HJ, Mayer A (2016) Steric hindrance of SNARE transmembrane domain organization impairs the hemifusion-to-fusion transition. EMBO Rep 17:1590–1608. https://doi.org/10.15252/embr.201642209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Haas A, Conradt B, Wickner W (1994) G-protein ligands inhibit in vitro reactions of vacuole inheritance. J Cell Biol 126:87–97

    Article  CAS  Google Scholar 

  27. Strasser B, Iwaszkiewicz J, Michielin O, Mayer A (2011) The V-ATPase proteolipid cylinder promotes the lipid-mixing stage of SNARE-dependent fusion of yeast vacuoles. EMBO J 30:4126–4141. https://doi.org/10.1038/emboj.2011.335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Karunakaran S, Fratti RA (2013) The lipid composition and physical properties of the yeast vacuole affect the hemifusion-fusion transition. Traffic 14:650–662. https://doi.org/10.1111/tra.12064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Desfougères Y, Neumann H, Mayer A (2016) Organelle size control - increasing vacuole content activates SNAREs to augment organelle volume through homotypic fusion. J Cell Sci 129:2817–2828. https://doi.org/10.1242/jcs.184382

    Article  CAS  PubMed  Google Scholar 

  30. Schwartz ML, Merz AJ (2009) Capture and release of partially zipped trans-SNARE complexes on intact organelles. J Cell Biol 185:535–549. https://doi.org/10.1083/jcb.200811082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Mayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

D’Agostino, M., Mayer, A. (2019). Assay of Lipid Mixing and Fusion Pore Formation in the Fusion of Yeast Vacuoles. In: Fratti, R. (eds) SNAREs. Methods in Molecular Biology, vol 1860. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8760-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8760-3_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8759-7

  • Online ISBN: 978-1-4939-8760-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics