Skip to main content

Computational Models of Cell Cycle Transitions

  • Protocol
  • First Online:
Computational Cell Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1819))

Abstract

The cell cycle is one of the best understood cellular processes in biology. Many of the key interactions occurring throughout the cell cycle have already been identified. This feature makes the system ideally suited for modelers who can use all the available interaction knowledge to build a systems level model of the underlying molecular regulatory network. This model can serve to identify gaps in our knowledge and to test theoretical assumptions or constrain the space of possible solutions. The cell cycle is a repetitive chain of events that goes through several checkpoints. Thus, the cell cycle can be studied under the perspective of an oscillator with checkpoints built into it, or as a series of switch-like transitions that goes from one state to another, converging on a closed loop. We shall discuss that latter position and present a framework for building and analyzing differential equation models of switch-like behavior. We shall then apply and review diverse models for each of the cell cycle transitions and discuss how multiple switches are combined in the cell cycle to create fast and robust transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Donnell MO, Langston L, Stillman B, Donnell MO, Langston L, Bell SP, Kaguni JM, Pfeiffer V, Lingner J, Cotmore SF, Tattersall P, Zielke N, Edgar BA, Melvin L (2013) Principles and concepts of DNA replication. Cold Spring Harb Perspect Biol 5:1–14

    Article  Google Scholar 

  2. McAdams HH, Shapiro L (2003) A bacterial cell-cycle regulatory network operating in time and space. Science (80) 301(5641):1874–1877

    Article  CAS  Google Scholar 

  3. Ausmees N, Jacobs-Wagner C (2003) Spatial and temporal control of differentiation and cell cycle progression in Caulobacter crescentus. Annu Rev Microbiol 57(1):225–247

    Article  CAS  Google Scholar 

  4. Kelman LM, Kelman Z (2014) Archaeal DNA replication. Annu Rev Genet 48:71–97

    Article  CAS  Google Scholar 

  5. Csikász-Nagy A, Palmisano A, Zámborszky J (2011) Molecular network dynamics of cell cycle control: transitions to start and finish. Methods Mol Biol 761:277–291

    Article  Google Scholar 

  6. Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K (2015) Molecular biology of the cell, 6th edn. Garland Science, New York

    Google Scholar 

  7. Hartwell LH, Mortimer RK, Culotti J, Culotti M (1973) Genetic control of the cell division cycle in yeast: V. Genetic analysis of cdc mutants. Genetics 74(2):267–286

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Nurse P (1975) Genetic control of cell size at cell division in yeast. Nature 256:547–551

    Article  CAS  Google Scholar 

  9. Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T (1983) Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33(2):389–396

    Article  CAS  Google Scholar 

  10. Tyson JJ, Novak B (2001) Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions. J Theor Biol 210(2):249–263

    Article  CAS  Google Scholar 

  11. Santos SDM, Ferrell JE (2008) Systems biology: on the cell cycle and its switches. Nature 454(7202):288–289

    Article  CAS  Google Scholar 

  12. Musacchio A, Ciliberto A (2012) The spindle-assembly checkpoint and the beauty of self-destruction. Nat Struct Mol Biol 19(11):1059–1061

    Article  CAS  Google Scholar 

  13. Tyson JJ (1999) Models of cell cycle control in eukaryotes. J Biotechnol 71(1):239–244

    Article  CAS  Google Scholar 

  14. Kitano H, Funahashi A, Matsuoka Y, Oda K (2005) Using process diagrams for the graphical representation of biological networks. Nat Biotechnol 23(8):961–966

    Article  CAS  Google Scholar 

  15. Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8(6):450–461

    Article  CAS  Google Scholar 

  16. Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15:221–231

    Article  CAS  Google Scholar 

  17. Novák B, Tyson JJ (2008) Design principles of biochemical oscillators. Nat Rev Mol Cell Biol 9(12):981–991

    Article  Google Scholar 

  18. Goldbeter A (1991) A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. Proc Natl Acad Sci 88(20):9107–9111

    Article  CAS  Google Scholar 

  19. Griffith JS (1968) Mathematics of cellular control processes II. Positive feedback to one gene. J Theor Biol 20(2):209–216

    Article  CAS  Google Scholar 

  20. Brandman O, Ferrell JE, Li R, Meyer T (2005) Interlinked fast and slow positive feedback loops drive reliable cell decisions. Science (80) 310(5747):496–498

    Article  CAS  Google Scholar 

  21. Ferrell JE (2008) Feedback regulation of opposing enzymes generates robust, all-or-none bistable responses. Curr Biol 18(6):R244–R245

    Article  CAS  Google Scholar 

  22. Angeli D, Ferrell JE, Sontag ED (2004) Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc Natl Acad Sci 101(7):1822–1827

    Article  CAS  Google Scholar 

  23. Novak B, Tyson JJ, Gyorffy B, Csikasz-Nagy A (2007) Irreversible cell-cycle transitions are due to systems-level feedback. Nat Cell Biol 9(7):724–728

    Article  CAS  Google Scholar 

  24. Goldenfeld N, Kadanoff LP (1999) Simple lessons from complexity. Science (80) 284(5411):87–89

    Article  CAS  Google Scholar 

  25. Wang R-S, Saadatpour A, Albert R (2012) Boolean modeling in systems biology: an overview of methodology and applications. Phys Biol 9(5):55001

    Article  Google Scholar 

  26. Barik D, Baumann WT, Paul MR, Novak B, Tyson JJ (2010) A model of yeast cell-cycle regulation based on multisite phosphorylation. Mol Syst Biol 6(1):405

    PubMed  PubMed Central  Google Scholar 

  27. Goldbeter A, Koshland DE (1981) An amplified sensitivity arising from covalent modification in biological systems. Proc Natl Acad Sci 78(11):6840–6844

    Article  CAS  Google Scholar 

  28. Rudorf S, Thommen M, Rodnina MV, Lipowsky R (2014) Deducing the kinetics of protein synthesis in vivo from the transition rates measured in vitro. PLoS Comput Biol 10(10):e1003909

    Article  Google Scholar 

  29. Davidi D, Noor E, Liebermeister W, Bar-Even A, Flamholz A, Tummler K, Barenholz U, Goldenfeld M, Shlomi T, Milo R (2016) Global characterization of in vivo enzyme catalytic rates and their correspondence to in vitro kcat measurements. Proc Natl Acad Sci 113(12):3401–3406

    Article  CAS  Google Scholar 

  30. Kuznetsov Y (2013) Elements of applied bifurcation theory. Springer, New York

    Google Scholar 

  31. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI—a complex pathway simulator. Bioinformatics 22(24):3067–3074

    Article  CAS  Google Scholar 

  32. Zwolak JW, Tyson JJ, Watson LT (2005) Parameter estimation for a mathematical model of the cell cycle in frog eggs. J Comput Biol 12(1):48–63

    Article  CAS  Google Scholar 

  33. Panning TD, Watson LT, Allen NA, Chen KC, Shaffer CA, Tyson JJ (2008) Deterministic parallel global parameter estimation for a model of the budding yeast cell cycle. J Glob Optim 40(4):719–738

    Article  Google Scholar 

  34. Tsai TY-C, Choi YS, Ma W, Pomerening JR, Tang C, Ferrell JE (2008) Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science (80) 321(5885):126–129

    Article  CAS  Google Scholar 

  35. Csikász-Nagy A (2009) Computational systems biology of the cell cycle. Brief Bioinform 10(4):424–434

    Article  Google Scholar 

  36. Ferrell JE, Tsai TY-C, Yang Q (2011) Modeling the cell cycle: why do certain circuits oscillate? Cell 144(6):874–885

    Article  CAS  Google Scholar 

  37. Skotheim JM, Di Talia S, Siggia ED, Cross FR (2008) Positive feedback of G1 cyclins ensures coherent cell cycle entry. Nature 454(7202):291–296

    Article  CAS  Google Scholar 

  38. Bloom J, Cross FR (2007) Multiple levels of cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol 8(2):149–160

    Article  CAS  Google Scholar 

  39. Nash P, Tang X, Orlicky S, Chen Q, Gertler FB, Mendenhall MD, Sicheri F, Pawson T, Tyers M (2001) Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414(6863):514–521

    Article  CAS  Google Scholar 

  40. Ferrell JE (2002) Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr Opin Cell Biol 14(2):140–148

    Article  CAS  Google Scholar 

  41. Barberis M, Klipp E (2007) Insights into the network controlling the G1/S transition in budding yeast. Genome Inform 18:85–99

    CAS  PubMed  Google Scholar 

  42. Schmoller KM, Turner JJ, Kõivomägi M, Skotheim JM (2015) Dilution of the cell cycle inhibitor Whi5 controls budding-yeast cell size. Nature 526(7572):268–272

    Article  CAS  Google Scholar 

  43. Wagner MV, Smolka MB, de Bruin RAM, Zhou H, Wittenberg C, Dowdy SF (Jan. 2009) Whi5 regulation by site specific CDK-phosphorylation in Saccharomyces cerevisiae. PLoS One 4(1):e4300

    Article  Google Scholar 

  44. Liu X et al (2015) Reliable cell cycle commitment in budding yeast is ensured by signal integration. Elife 4:1–19

    Google Scholar 

  45. Charvin G, Oikonomou C, Siggia ED, Cross FR (2010) Origin of irreversibility of cell cycle start in budding yeast. PLoS Biol 8(1):e1000284

    Article  Google Scholar 

  46. Garí E, Volpe T, Wang H, Gallego C, Futcher B, Aldea M (2001) Whi3 binds the mRNA of the G1 cyclin CLN3 to modulate cell fate in budding yeast. Genes Dev 15(21):2803–2808

    PubMed  PubMed Central  Google Scholar 

  47. Nash RS, Volpe T, Futcher B (2001) Isolation and characterization of WHI3, a size-control gene of Saccharomyces cerevisiae. Genetics 157(4):1469–1480

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Mizunuma M, Tsubakiyama R, Ogawa T, Shitamukai A, Kobayashi Y, Inai T, Kume K, Hirata D (2013) Ras/cAMP-dependent protein kinase (PKA) regulates multiple aspects of cellular events by phosphorylating the Whi3 cell cycle regulator in budding yeast. J Biol Chem 288(15):10558–10566

    Article  CAS  Google Scholar 

  49. Vergés E, Colomina N, Garí E, Gallego C, Aldea M (2007) Cyclin Cln3 is retained at the ER and released by the J chaperone Ydj1 in late G1 to trigger cell cycle entry. Mol Cell 26(5):649–662

    Article  Google Scholar 

  50. Ferrezuelo F, Colomina N, Palmisano A, Garí E, Gallego C, Csikász-Nagy A, Aldea M (2012) The critical size is set at a single-cell level by growth rate to attain homeostasis and adaptation. Nat Commun 3:1012

    Article  Google Scholar 

  51. Adames NR, Schuck PL, Chen KC, Murali TM, Tyson JJ, Peccoud J (2015) Experimental testing of a new integrated model of the budding yeast Start transition. Mol Biol Cell 26(22):3966–3984

    Article  CAS  Google Scholar 

  52. Csikász-Nagy A, Battogtokh D, Chen KC, Novák B, Tyson JJ (2006) Analysis of a generic model of eukaryotic cell-cycle regulation. Biophys J 90(12):4361–4379

    Article  Google Scholar 

  53. Domingo-Sananes MR, Kapuy O, Hunt T, Novak B (2011) Switches and latches: a biochemical tug-of-war between the kinases and phosphatases that control mitosis. Philos Trans R Soc B 366(1584):3584–3594

    Article  CAS  Google Scholar 

  54. O’Farrell PH (2001) Triggering the all-or-nothing switch into mitosis. Trends Cell Biol 11(12):512–519

    Article  Google Scholar 

  55. Novak B, Tyson JJ (1993) Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. J Cell Sci 106(4):1153–1168

    CAS  PubMed  Google Scholar 

  56. Araujo AR, Gelens L, Sheriff RSM, Santos SDM (2016) Positive feedback keeps duration of mitosis temporally insulated from upstream cell-cycle events. Mol Cell 64(2):362–375

    Article  CAS  Google Scholar 

  57. Krasinska L, Domingo-Sananes MR, Kapuy O, Parisis N, Harker B, Moorhead G, Rossignol M, Novak B, Fisher D (2011) Protein phosphatase 2A controls the order and dynamics of cell-cycle transitions. Mol Cell 44(3):437–450

    Article  CAS  Google Scholar 

  58. Mochida S, Maslen SL, Skehel M, Hunt T (2010) Greatwall phosphorylates an inhibitor of protein phosphatase 2A that is essential for mitosis. Science (80) 330(6011):1670–1673

    Article  CAS  Google Scholar 

  59. Gérard C, Tyson JJ, Coudreuse D, Novák B (2015) Cell cycle control by a minimal Cdk network. PLoS Comput Biol 11(2):e1004056

    Article  Google Scholar 

  60. Cardelli L, Csikász-Nagy A (2012) The cell cycle switch computes approximate majority. Sci Rep 2:656

    Article  Google Scholar 

  61. Cardelli L (2014) Morphisms of reaction networks that couple structure to function. BMC Syst Biol 8(1):84

    Article  Google Scholar 

  62. López-Avilés S, Kapuy O, Novák B, Uhlmann F (2009) Irreversibility of mitotic exit is the consequence of systems-level feedback. Nature 459(7246):592–595

    Article  Google Scholar 

  63. Simonetta M, Manzoni R, Mosca R, Mapelli M, Massimiliano L, Vink M, Novak B, Musacchio A, Ciliberto A (2009) The influence of catalysis on mad2 activation dynamics. PLoS Biol 7(1):e1000010

    Article  Google Scholar 

  64. Holt LJ, Krutchinsky AN, Morgan DO (2008) Positive feedback sharpens the anaphase switch. Nature 454(7202):353–357

    Article  CAS  Google Scholar 

  65. Romanel A, Jensen LJ, Cardelli L, Csikász-Nagy A (2012) Transcriptional regulation is a major controller of cell cycle transition dynamics. PLoS One 7(1):e29716

    Article  CAS  Google Scholar 

  66. Fisher D, Krasinska L, Coudreuse D, Novák B (2012) Phosphorylation network dynamics in the control of cell cycle transitions. J Cell Sci 125(Pt 20):4703–4711

    Article  CAS  Google Scholar 

  67. Cardelli L, Hernansaiz-Ballesteros RD, Dalchau N, Csikász-Nagy A (2017) Efficient Switches in Biology and Computer Science. PLoS Comput Biol 13(1):e1005100. https://doi.org/10.1371/journal.pcbi.1005100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Angluin D, Aspnes J, Eisenstat D (2008) A simple population protocol for fast robust approximate majority. Distrib Comput 21(2):87–102

    Article  Google Scholar 

  69. Cardelli L, Csikász-Nagy A, Dalchau N, Tribastone M, Tschaikowski M (2016) Noise reduction in complex biological switches. Sci Rep 6:20214

    Article  CAS  Google Scholar 

  70. Kitano H (2007) A robustness-based approach to systems-oriented drug design. Nat Rev Drug Discov 5(3):202–210

    Article  Google Scholar 

  71. Kaizu K, Ghosh S, Matsuoka Y, Moriya H, Shimizu-Yoshida Y, Kitano H (2010) A comprehensive molecular interaction map of the budding yeast cell cycle. Mol Syst Biol 6(1):415

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

R.H.B is supported by Microsoft Research through its PhD Scholarship Programme and K.J. is supported by the EPSRC Centre for Doctoral Training in Cross-Disciplinary Approaches to Non-Equilibrium Systems (CANES, EP/L015854/1).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hernansaiz-Ballesteros, R., Jenkins, K., Csikász-Nagy, A. (2018). Computational Models of Cell Cycle Transitions. In: von Stechow, L., Santos Delgado, A. (eds) Computational Cell Biology. Methods in Molecular Biology, vol 1819. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8618-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8618-7_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8617-0

  • Online ISBN: 978-1-4939-8618-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics