Skip to main content

TMV-Based Adapter Templates for Enhanced Enzyme Loading in Biosensor Applications

  • Protocol
  • First Online:
Book cover Virus-Derived Nanoparticles for Advanced Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1776))

Abstract

Nanotubular tobacco mosaic virus (TMV) particles and RNA-free lower-order coat protein (CP) aggregates have been employed as enzyme carriers in different diagnostic layouts and compared for their influence on biosensor performance. In the following, we describe a label-free electrochemical biosensor for improved glucose detection by use of TMV adapters and the enzyme glucose oxidase (GOD). A specific and efficient immobilization of streptavidin-conjugated GOD ([SA]-GOD) complexes on biotinylated TMV nanotubes or CP aggregates was achieved via bioaffinity binding. Glucose sensors with adsorptively immobilized [SA]-GOD, and with [SA]-GOD cross-linked with glutardialdehyde, respectively, were tested in parallel on the same sensor chip. Comparison of these sensors revealed that TMV adapters enhanced the amperometric glucose detection remarkably, conveying highest sensitivity, an extended linear detection range and fastest response times. These results underline a great potential of an integration of virus/biomolecule hybrids with electronic transducers for applications in biosensorics and biochips. Here, we describe the fabrication and use of amperometric sensor chips combining an array of circular Pt electrodes, their loading with GOD-modified TMV nanotubes (and other GOD immobilization methods), and the subsequent investigations of the sensor performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sassolas A, Blum LJ, Leca-Bouvier BD (2012) Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 30(3):489–511

    Article  CAS  PubMed  Google Scholar 

  2. Brena B, Gonzalez-Pombo P, Batista-Viera F (2013) Immobilization of enzymes: a literature survey. Methods Mol Biol 1051:15–31

    Article  CAS  PubMed  Google Scholar 

  3. DiCosimo R, McAuliffe J, Poulose AJ, Bohlmann G (2013) Industrial use of immobilized enzymes. Chem Soc Rev 42(15):6437–6474

    Article  CAS  PubMed  Google Scholar 

  4. Singh RK, Tiwari MK, Singh R, Lee JK (2013) From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. Int J Mol Sci 14(1):1232–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40(6):1451–1463

    Article  CAS  Google Scholar 

  6. Bäcker M, Koch C, Eiben S, Geiger F, Eber F, Gliemann H et al (2017) Tobacco mosaic virus as enzyme nanocarrier for electrochemical biosensors. Sensors Actuators B Chem 238:716–722

    Article  CAS  Google Scholar 

  7. Koch C, Wabbel K, Eber FJ, Krolla-Sidenstein P, Azucena C, Gliemann H et al (2015) Modified TMV particles as beneficial scaffolds to present sensor enzymes. Front Plant Sci 6, Article 1137

    Google Scholar 

  8. Carette N, Engelkamp H, Akpa E, Pierre SJ, Cameron NR, Christianen PC et al (2007) A virus-based biocatalyst. Nat Nanotechnol 2(4):226–229

    Article  CAS  PubMed  Google Scholar 

  9. Chatterji A, Ochoa W, Shamieh L, Salakian SP, Wong SM, Clinton G et al (2004) Chemical conjugation of heterologous proteins on the surface of cowpea mosaic virus. Bioconjug Chem 15(4):807–813

    Article  CAS  PubMed  Google Scholar 

  10. Aljabali AA, Barclay JE, Steinmetz NF, Lomonossoff GP, Evans DJ (2012) Controlled immobilisation of active enzymes on the cowpea mosaic virus capsid. Nanoscale 4(18):5640–5645

    Article  CAS  PubMed  Google Scholar 

  11. Pille J, Cardinale D, Carette N, Di Primo C, Besong-Ndika J, Walter J et al (2013) General strategy for ordered noncovalent protein assembly on well-defined nanoscaffolds. Biomacromolecules 14(12):4351–4359

    Article  CAS  PubMed  Google Scholar 

  12. Cardinale D, Michon T (2016) Enzyme nanocarriers. Pan Standford Publishing, CRC Press, Taylor and Francis Group, Boca Raton, FL

    Google Scholar 

  13. Bittner AM, Alonso JM, Gorzny ML, Wege C (2013) Nanoscale science and technology with plant viruses and bacteriophages. Subcell Biochem 68:667–702

    Article  CAS  PubMed  Google Scholar 

  14. Culver JN, Brown AD, Zang F, Gnerlich M, Gerasopoulos K, Ghodssi R (2015) Plant virus directed fabrication of nanoscale materials and devices. Virology 479-480:200–212

    Article  CAS  PubMed  Google Scholar 

  15. Fan XZ, Pomerantseva E, Gnerlich M, Brown A, Gerasopoulos K, McCarthy M et al (2013) Tobacco mosaic virus: a biological building block for micro/nano/bio systems. J Vac Sci Technol A 31(5) 050815

    Article  CAS  Google Scholar 

  16. Caspar DL (1963) Assembly and stability of the tobacco mosaic virus particle. Adv Protein Chem 18:37–121

    Article  CAS  PubMed  Google Scholar 

  17. Butler PJ (2009) Assembly of tobacco mosaic virus. R Soc Lond B Biol Sci 276(943): 151–163 

    Article  CAS  Google Scholar 

  18. Koch C, Eber FJ, Azucena C, Forste A, Walheim S, Schimmel T et al (2016) Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies. Beilstein J Nanotechnol 7:613–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Geiger FC, Eber FJ, Eiben S, Mueller A, Jeske H, Spatz JP et al (2013) TMV nanorods with programmed longitudinal domains of differently addressable coat proteins. Nanoscale 5(9):3808–3816

    Article  CAS  PubMed  Google Scholar 

  20. Chen C, Xie Q, Yang D, Xiao H, Fu Y, Tan Y et al (2013) Recent advances in electrochemical glucose biosensors: a review. RSC Adv 3(14):4473–4491

    Article  CAS  Google Scholar 

  21. Mao C, Liu A, Cao B (2009) Virus-based chemical and biological sensing. Angew Chem 48(37):6790–6810

    Article  CAS  Google Scholar 

  22. Srinivasan K, Cular S, Bhethanabotla VR, Lee SY, Harris MT, Culver JN (2005) AIChE annual meeting, Cincinnati, USA, p 74d/1

    Google Scholar 

  23. Bruckman MA, Liu J, Koley G, Li Y, Benicewicz B, Niu Z et al (2010) Tobacco mosaic virus based thin film sensor for detection of volatile organic compounds. J Mater Chem 20(27):5715–5719

    Article  CAS  Google Scholar 

  24. Zang F, Gerasopoulos K, Fan XZ, Brown AD, Culver JN, Ghodssi R (2014) An electrochemical sensor for selective TNT sensing based on Tobacco mosaic virus-like particle binding agents. Chem Commun 50(85):12977–12980

    Article  CAS  Google Scholar 

  25. Fan XZ, Naves L, Siwak NP, Brown A, Culver J, Ghodssi R (2015) Integration of genetically modified virus-like-particles with an optical resonator for selective bio-detection. Nanotechnology 26(20):205501

    Article  CAS  PubMed  Google Scholar 

  26. Bäcker M, Delle L, Poghossian A, Biselli M, Zang W, Wagner P et al (2011) Electrochemical sensor array for bioprocess monitoring. Electrochim Acta 56(26):9673–9678

    Article  CAS  Google Scholar 

  27. Gooding G Jr, Hebert T (1967) A simple technique for purification of tobacco mosaic virus in large quantities. Phytopathology 57(11):1285

    PubMed  Google Scholar 

  28. Zaitlin M, Israel H (1975) Tobacco mosaic virus (type strain). CMI/AAB descriptions of plant viruses. No. 151. http://www.dpvweb.net/

  29. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  30. Fraenkel-Conrat H (1957) Degradation of tobacco mosaic virus with acetic acid. Virology 4(1):1–4

    Article  CAS  PubMed  Google Scholar 

  31. Butler PJ (1984) The current picture of the structure and assembly of tobacco mosaic virus. J Gen Virol 65(Pt 2):253–279

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Schöning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Koch, C., Poghossian, A., Wege, C., Schöning, M.J. (2018). TMV-Based Adapter Templates for Enhanced Enzyme Loading in Biosensor Applications. In: Wege, C., Lomonossoff, G. (eds) Virus-Derived Nanoparticles for Advanced Technologies. Methods in Molecular Biology, vol 1776. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7808-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7808-3_35

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7806-9

  • Online ISBN: 978-1-4939-7808-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics