Skip to main content

Phylogenetic and Other Conservation-Based Approaches to Predict Protein Functional Sites

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1762))

Abstract

Proteins use their functional regions to exploit various activities, including binding to other proteins, nucleic acids, or drugs. Functional sites of the proteins have a tendency to be more conserved than the rest of the protein surface. Therefore, detection of the conserved residues using phylogenetic analysis is a general approach to predict functionally critical residues. In this chapter, we describe some of the available methods to predict functional sites and demonstrate a complete pipeline with tool alternatives at several steps. We explain the standard procedure and all intermediate stages including homology detection with BLAST search, multiple sequence alignment (MSA) and the construction of a phylogenetic tree for a given query sequence. Additionally, we demonstrate the prediction results of these methods on a case study. Finally, we discuss the possible challenges and bottlenecks throughout the pipeline. Our step-by-step description about the functional site prediction could be a helpful resource for the researchers interested in finding protein functional sites, to be used in drug discovery research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The UniProt Consortium (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–D169. https://doi.org/10.1093/nar/gkw1152

    Article  Google Scholar 

  2. Keskin O, Tuncbag N, Gursoy A (2016) Predicting protein-protein interactions from the molecular to the proteome level. Chem Rev 116:4884–4909. https://doi.org/10.1021/acs.chemrev.5b00683

    Article  CAS  PubMed  Google Scholar 

  3. Pazos F, Bang J-W (2006) Computational prediction of functionally important regions in proteins. Curr Bioinforma 1:15–23. https://doi.org/10.2174/157489306775330633

    Article  CAS  Google Scholar 

  4. Capra JA, Singh M (2007) Predicting functionally important residues from sequence conservation. Bioinformatics 23:1875–1882. https://doi.org/10.1093/bioinformatics/btm270

    Article  CAS  PubMed  Google Scholar 

  5. Keskin O, Tsai C-J, Wolfson H, Nussinov R (2004) A new, structurally nonredundant, diverse data set of protein-protein interfaces and its implications. Protein Sci 13:1043–1055. https://doi.org/10.1110/ps.03484604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tuncbag N, Gursoy A, Guney E et al (2008) Architectures and functional coverage of protein–protein interfaces. J Mol Biol 381:785–802. https://doi.org/10.1016/j.jmb.2008.04.071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bray T, Chan P, Bougouffa S et al (2009) SitesIdentify: a protein functional site prediction tool. BMC Bioinformatics 10:379. https://doi.org/10.1186/1471-2105-10-379

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kc DB, Livesay DR (2011) Topology improves phylogenetic motif functional site predictions. IEEE/ACM Trans Comput Biol Bioinform 8:226–233. https://doi.org/10.1109/TCBB.2009.60

    Article  PubMed  Google Scholar 

  9. Pazos F, Valencia A (2001) Similarity of phylogenetic trees as indicator of protein-protein interaction. Protein Eng 14:609–614. https://doi.org/10.1093/protein/14.9.609

    Article  CAS  PubMed  Google Scholar 

  10. Lichtarge O, Bourne HR, Cohen FE (1996) An evolutionary trace method defines binding surfaces common to protein families. J Mol Biol 257:342–358. https://doi.org/10.1006/jmbi.1996.0167

    Article  CAS  PubMed  Google Scholar 

  11. Landau M, Mayrose I, Rosenberg Y et al (2005) ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res 33:W299–W302. https://doi.org/10.1093/nar/gki370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ashkenazy H, Abadi S, Martz E et al (2016) ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res 44:W344–W350. https://doi.org/10.1093/nar/gkw408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sankararaman S, Sjölander K (2008) INTREPID--INformation-theoretic TREe traversal for protein functional site IDentification. Bioinformatics 24:2445–2452. https://doi.org/10.1093/bioinformatics/btn474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lua RC, Wilson SJ, Konecki DM et al (2016) UET: a database of evolutionarily-predicted functional determinants of protein sequences that cluster as functional sites in protein structures. Nucleic Acids Res 44:D308–D312. https://doi.org/10.1093/nar/gkv1279

    Article  CAS  PubMed  Google Scholar 

  15. Ofran Y, Rost B (2007) ISIS: interaction sites identified from sequence. Bioinformatics 23:e13–e16. https://doi.org/10.1093/bioinformatics/btl303

    Article  CAS  PubMed  Google Scholar 

  16. de Juan D, Pazos F, Valencia A (2013) Emerging methods in protein co-evolution. Nat Rev Genet 14:249–261. https://doi.org/10.1038/nrg3414

    Article  PubMed  Google Scholar 

  17. Hopf TA, Schärfe CPI, Rodrigues JPGLM et al (2014) Sequence co-evolution gives 3D contacts and structures of protein complexes. eLife 3:1–45. https://doi.org/10.7554/eLife.03430

    Article  CAS  Google Scholar 

  18. Rodriguez-Rivas J, Marsili S, Juan D, Valencia A (2016) Conservation of coevolving protein interfaces bridges prokaryote-eukaryote homologies in the twilight zone. Proc Natl Acad Sci U S A 113:15018–15023. https://doi.org/10.1073/pnas.1611861114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gueudré T, Baldassi C, Zamparo M et al (2016) Simultaneous identification of specifically interacting paralogs and interprotein contacts by direct coupling analysis. Proc Natl Acad Sci U S A 113:12186–12191. https://doi.org/10.1073/pnas.1607570113

    Article  PubMed  PubMed Central  Google Scholar 

  20. Baker FN, Porollo A (2016) CoeViz: a web-based tool for coevolution analysis of protein residues. BMC Bioinformatics 17:119. https://doi.org/10.1186/s12859-016-0975-z

    Article  PubMed  PubMed Central  Google Scholar 

  21. Huntley RP, Sawford T, Mutowo-Meullenet P et al (2015) The GOA database: gene ontology annotation updates for 2015. Nucleic Acids Res 43:D1057–D1063. https://doi.org/10.1093/nar/gku1113

    Article  CAS  PubMed  Google Scholar 

  22. Berezin C, Glaser F, Rosenberg J et al (2004) ConSeq: the identification of functionally and structurally important residues in protein sequences. Bioinformatics 20:1322–1324. https://doi.org/10.1093/bioinformatics/bth070

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

H.A. acknowledges TUBITAK 2211 Doctoral Fellowship Program. N.T. thanks to the TUBITAK Career Development Program (Project no: 117E192). T.D. acknowledges TUBITAK BIDEB 2218 Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tunca Doğan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Atas, H., Tuncbag, N., Doğan, T. (2018). Phylogenetic and Other Conservation-Based Approaches to Predict Protein Functional Sites. In: Gore, M., Jagtap, U. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 1762. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7756-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7756-7_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7755-0

  • Online ISBN: 978-1-4939-7756-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics