Skip to main content

Identification of Potential MicroRNA Biomarkers by Meta-analysis

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1762))

Abstract

Meta-analysis statistically assesses the results (e.g., effect sizes) across independent studies that are conducted in accordance with similar protocols and objectives. Current genomic meta-analysis studies do not perform extensive re-analysis on raw data because full data access would not be commonplace, although the best practice of open research for sharing well-formed data have been actively advocated. This chapter describes a simple and easy-to-follow method for conducting meta-analysis of multiple studies without using raw data. Examples for meta-analysis of microRNAs (miRNAs) are provided to illustrate the method. MiRNAs are potential biomarkers for early diagnosis and epigenetic monitoring of diseases. A number of miRNAs have been identified to be differentially expressed, i.e., overexpressed or underexpressed, under diseased states but only a small fraction would be highly effective biomarkers or therapeutic targets of diseases. The meta-analysis method as described in this chapter aims to identify the miRNAs that are consistently found dysregulated across independent studies as biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koricheva J, Gurevitch J (2013) Place of meta-analysis among other methods of research synthesis. In: Koricheva J, Gurevitch J, Mengersen K (eds) Handbook of meta-analysis in ecology and evolution. Princeton University Press

    Google Scholar 

  2. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2009) Introduction to meta-analysis. John Wiley & Sons, Ltd., Chichester. https://doi.org/10.1002/9780470743386

    Book  Google Scholar 

  3. Evangelou E, Ioannidis JPA (2013) Meta-analysis methods for genome-wide association studies and beyond. Nat Rev Genet 14:379–389. https://doi.org/10.1038/nrg3472

    Article  CAS  PubMed  Google Scholar 

  4. Levinson DF (2005) Meta-analysis in psychiatric genetics. Curr Psychiatry Rep 7:143–151. https://doi.org/10.1007/s11920-005-0012-9

    Article  PubMed  Google Scholar 

  5. Borenstein M (2009) Effect sizes for continuous data. In: Cooper H, Hedges LV, Valentine JC (eds) The handbook of research synthesis and meta-analysis. Russell Sage Foundation

    Google Scholar 

  6. Tseng GC, Ghosh D, Feingold E (2012) Comprehensive literature review and statistical considerations for microarray meta-analysis. Nucleic Acids Res 40:3785–3799. https://doi.org/10.1093/nar/gkr1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhu H, Leung SW (2015) Identification of microRNA biomarkers in type 2 diabetes: a meta-analysis of controlled profiling studies. Diabetologia 58:900–911. https://doi.org/10.1007/s00125-015-3510-2

    Article  CAS  PubMed  Google Scholar 

  8. Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement (reprinted from annals of internal medicine). Phys Ther 89:873–880. https://doi.org/10.1371/journal.pmed.1000097

    PubMed  Google Scholar 

  9. Minimum information about a microarray experiment – MIAME. http://www.mged.org/Workgroups/MIAME/miame_2.0.html

  10. Kahn SE (2001) Clinical review 135: the importance of beta-cell failure in the development and progression of type 2 diabetes. J Clin Endocrinol Metab 86:4047–4058

    CAS  PubMed  Google Scholar 

  11. Karolina DS, Armugam A, Sepramaniam S, Jeyaseelan K (2012) MiRNAs and diabetes mellitus. Expert Rev Endocrinol Metab 7:281–300. https://doi.org/10.1586/eem.12.21

    Article  CAS  Google Scholar 

  12. Winer N, Sowers JR (2004) Epidemiology of diabetes. J Clin Pharmacol 44:397–405. https://doi.org/10.1177/0091270004263017

    Article  PubMed  Google Scholar 

  13. International Diabetes Federation (IDF) (2015) IDF Diabetes Atlas, 7th edn. idf.org. doi:https://doi.org/10.1289/image.ehp.v119.i03

  14. Shantikumar S, Caporali A, Emanueli C (2012) Role of microRNAs in diabetes and its cardiovascular complications. Cardiovasc Res 93:583–593. https://doi.org/10.1093/cvr/cvr300

    Article  CAS  PubMed  Google Scholar 

  15. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14(10):1902. https://doi.org/10.1101/gr.2722704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee Y, Kim M, Han J et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060. https://doi.org/10.1038/sj.emboj.7600385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531. https://doi.org/10.1038/nrg1379

    Article  CAS  PubMed  Google Scholar 

  18. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297. https://doi.org/10.1016/S0092-8674(04)00045-5

    Article  CAS  PubMed  Google Scholar 

  19. Arroyo JD, Chevillet JR, Kroh EM et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108:5003–5008. https://doi.org/10.1073/pnas.1019055108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vickers KC, Palmisano BT, Shoucri BM et al (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13:423–433. https://doi.org/10.1038/ncb2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O (2009) Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol 11:1143–1149. https://doi.org/10.1038/ncb1929

    Article  CAS  PubMed  Google Scholar 

  22. Suárez Y, Sessa WC (2009) MicroRNAs as novel regulators of angiogenesis. Circ Res 104:442–454. https://doi.org/10.1161/CIRCRESAHA.108.191270

    Article  PubMed  PubMed Central  Google Scholar 

  23. Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338. https://doi.org/10.1126/science.1085242

    Article  CAS  PubMed  Google Scholar 

  24. Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379. https://doi.org/10.1146/annurev-biochem-060308-103103

    Article  CAS  PubMed  Google Scholar 

  25. Bagge A, Clausen TR, Larsen S et al (2012) MicroRNA-29a is up-regulated in beta-cells by glucose and decreases glucose-stimulated insulin secretion. Biochem Biophys Res Commun 426:266–272. https://doi.org/10.1016/j.bbrc.2012.08.082

    Article  CAS  PubMed  Google Scholar 

  26. Karolina DS, Tavintharan S, Armugam A et al (2012) Circulating miRNA profiles in patients with metabolic syndrome. J Clin Endocrinol Metab 97:E2271–E2276. https://doi.org/10.1210/jc.2012-1996

    Article  CAS  PubMed  Google Scholar 

  27. Locke JM, Harries LW (2012) MicroRNA expression profiling of human islets from individuals with and without type 2 diabetes: promises and pitfalls. Biochem Soc Trans 40:800–803. https://doi.org/10.1042/BST20120049

    Article  CAS  PubMed  Google Scholar 

  28. Liu J, Liu W, Ying H et al (2012) Analysis of microRNA expression profile induced by AICAR in mouse hepatocytes. Gene 512:364–372. https://doi.org/10.1016/j.gene.2012.09.118

    Article  PubMed  Google Scholar 

  29. Begley CG, Ellis LM (2012) Raise standards for preclinical cancer research. Nature 483:531–533. https://doi.org/10.1038/483531a

    Article  CAS  PubMed  Google Scholar 

  30. Prinz F, Schlange T, Asadullah K (2011) Believe it or not: how much can we rely on published data on potential drug targets? Nat Rev Drug Discov 10:712. https://doi.org/10.1038/nrd3439-c1

    Article  CAS  PubMed  Google Scholar 

  31. Mobley A, Linder SK, Braeuer R et al (2013) A survey on data reproducibility in cancer research provides insights into our limited ability to translate findings from the laboratory to the clinic. PLoS One 8:e63221. https://doi.org/10.1371/journal.pone.0063221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guay C, Roggli E, Nesca V et al (2011) Diabetes mellitus, a microRNA-related disease? Transl Res 157:253–264. https://doi.org/10.1016/j.trsl.2011.01.009

    Article  CAS  PubMed  Google Scholar 

  33. Guay C, Jacovetti C, Nesca V (2012) Emerging roles of non-coding RNAs in pancreatic β-cell function and dysfunction. Diabetes Obes Metab 14:12–21

    Article  CAS  PubMed  Google Scholar 

  34. Hamar P (2012) Role of regulatory microRNAs in type 2 diabetes mellitus related inflammation. Nucleic Acids Ther 22:289–294

    CAS  Google Scholar 

  35. McClelland AD, Kantharidis P (2014) MicroRNA in the development of diabetic complications. Clin Sci (Lond) 126:95–110. https://doi.org/10.1042/CS20130079

    Article  CAS  Google Scholar 

  36. Natarajan R, Putta S, Kato M (2012) MicroRNAs and diabetic complications. J Cardiovasc Transl Res 5:413–422

    Article  PubMed  PubMed Central  Google Scholar 

  37. Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. J Stat Softw 36:1–48

    Article  Google Scholar 

  38. Centre for Reviews and Dissemination (2009) Systematic reviews: CRDs guidance for undertaking reviews in health care. Cent Rev Dissemination, Univ York, 2008. https://doi.org/10.1017/CBO9781107415324.004

  39. Park N, Zhou H, Elashoff D (2009) Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res 15:5473–5477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hanke M, Hoefig K, Merz H et al (2010) A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol 28:655–661. https://doi.org/10.1016/j.urolonc.2009.01.027

    Article  CAS  PubMed  Google Scholar 

  41. Weber JA, Baxter DH, Zhang S et al (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56:1733–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yamada Y, Enokida H, Kojima S et al (2011) MiR-96 and miR-183 detection in urine serve as potential tumor markers of urothelial carcinoma: correlation with stage and grade, and comparison with urinary cytology. Cancer Sci 102:522–529. https://doi.org/10.1111/j.1349-7006.2010.01816.x

    Article  CAS  PubMed  Google Scholar 

  43. Bustin S, Benes V, Garson J et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622. https://doi.org/10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  44. R Core Team (2015) R: A language and environment for statistical computing. R Found Stat Comput, Vienna, Austria 0:{ISBN} 3-900051-07-0. doi:ISBN 3-900051-07-0

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhu, H., Leung, Sw. (2018). Identification of Potential MicroRNA Biomarkers by Meta-analysis. In: Gore, M., Jagtap, U. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 1762. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7756-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7756-7_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7755-0

  • Online ISBN: 978-1-4939-7756-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics