Skip to main content

Prediction and Optimization of Pharmacokinetic and Toxicity Properties of the Ligand

  • Protocol
  • First Online:
Book cover Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1762))

Abstract

A crucial factor for the approval and success of any drug is how it behaves in the body. Many drugs, however, do not reach the market due to poor efficacy or unacceptable side effects. It is therefore important to take these into consideration early in the drug development process, both in the prioritization of potential hits, and optimization of lead compounds. In silico approaches offer a cost and time-effective approach to rapidly screen and optimize pharmacokinetic and toxicity properties. Here we demonstrate the use of the comprehensive analysis system pkCSM, to allow early identification of potential problems, prioritization of hits, and optimization of leads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khan MT (2010) Predictions of the ADMET properties of candidate drug molecules utilizing different QSAR/QSPR modelling approaches. Curr Drug Metab 11(4):285–295

    Article  CAS  PubMed  Google Scholar 

  2. Lill MA (2007) Multi-dimensional QSAR in drug discovery. Drug Discov Today 12(23–24):1013–1017

    Article  CAS  PubMed  Google Scholar 

  3. Obrezanova O, Csanyi G, Gola JM, Segall MD (2007) Gaussian processes: a method for automatic QSAR modeling of ADME properties. J Chem Inf Model 47(5):1847–1857

    Article  CAS  PubMed  Google Scholar 

  4. Drwal MN, Banerjee P, Dunkel M, Wettig MR, Preissner R (2014) ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res 42(Web Server issue):W53–W58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Fröhlich H, Wegner JK, Sieker F, Zell A (2006) Kernel functions for attributed molecular graphs–a new similarity-based approach to ADME prediction in classification and regression. QSAR Comb Sci 25(4):317–326

    Article  Google Scholar 

  6. Moroy G, Martiny VY, Vayer P, Villoutreix BO, Miteva MA (2012) Toward in silico structure-based ADMET prediction in drug discovery. Drug Discov Today 17(1–2):44–55

    Article  CAS  PubMed  Google Scholar 

  7. Pires DE, Ascher DB (2016) CSM-lig: a web server for assessing and comparing protein-small molecule affinities. Nucleic Acids Res 44(W1):W557–W561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Guner OF, Bowen JP (2013) Pharmacophore modeling for ADME. Curr Top Med Chem 13(11):1327–1342

    Article  CAS  PubMed  Google Scholar 

  9. Pires DE, Blundell TL, Ascher DB (2015) pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58(9):4066–4072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: an open chemical toolbox. J Cheminform 3:33

    Article  PubMed Central  PubMed  Google Scholar 

  11. Sigurdardottir AG, Winter A, Sobkowicz A, Fragai M, Chirgadze D, Ascher DB, Blundell TL, Gherardi E (2015) Exploring the chemical space of the lysine-binding pocket of the first kringle domain of hepatocyte growth factor/scatter factor (HGF/SF) yields a new class of inhibitors of HGF/SF-MET binding. Chem Sci 6(11):6147–6157

    Article  CAS  Google Scholar 

  12. Albiston AL, Morton CJ, Ng HL, Pham V, Yeatman HR, Ye S, Fernando RN, De Bundel D, Ascher DB, Mendelsohn FA, Parker MW, Chai SY (2008) Identification and characterization of a new cognitive enhancer based on inhibition of insulin-regulated aminopeptidase. FASEB J 22(12):4209–4217

    Article  CAS  PubMed  Google Scholar 

  13. Ascher DB, Wielens J, Nero TL, Doughty L, Morton CJ, Parker MW (2014) Potent hepatitis C inhibitors bind directly to NS5A and reduce its affinity for RNA. Sci Rep 4:4765

    Article  PubMed Central  PubMed  Google Scholar 

  14. Chang A, Schomburg I, Placzek S, Jeske L, Ulbrich M, Xiao M, Sensen CW, Schomburg D (2015) BRENDA in 2015: exciting developments in its 25th year of existence. Nucleic Acids Res 43(Database issue):D439–D446

    Article  CAS  PubMed  Google Scholar 

  15. Kaminskas LM, McLeod VM, Ascher DB, Ryan GM, Jones S, Haynes JM, Trevaskis NL, Chan LJ, Sloan EK, Finnin BA, Williamson M, Velkov T, Williams ED, Kelly BD, Owen DJ, Porter CJ (2015) Methotrexate-conjugated PEGylated dendrimers show differential patterns of deposition and activity in tumor-burdened lymph nodes after intravenous and subcutaneous administration in rats. Mol Pharm 12(2):432–443

    Article  CAS  PubMed  Google Scholar 

  16. Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53(7):2719–2740

    Article  CAS  PubMed  Google Scholar 

  17. Chai SY, Yeatman HR, Parker MW, Ascher DB, Thompson PE, Mulvey HT, Albiston AL (2008) Development of cognitive enhancers based on inhibition of insulin-regulated aminopeptidase. BMC Neurosci 9(Suppl 2):S14

    Article  PubMed Central  PubMed  Google Scholar 

  18. Ascher DB, Cromer BA, Morton CJ, Volitakis I, Cherny RA, Albiston AL, Chai SY, Parker MW (2011) Regulation of insulin-regulated membrane aminopeptidase activity by its C-terminal domain. Biochemistry 50(13):2611–2622

    Article  CAS  PubMed  Google Scholar 

  19. Hermans SJ, Ascher DB, Hancock NC, Holien JK, Michell BJ, Chai SY, Morton CJ, Parker MW (2015) Crystal structure of human insulin-regulated aminopeptidase with specificity for cyclic peptides. Protein Sci 24(2):190–199

    Article  CAS  PubMed  Google Scholar 

  20. Silvino AC, Costa GL, Araujo FC, Ascher DB, Pires DE, Fontes CJ, Carvalho LH, Brito CF, Sousa TN (2016) Variation in human cytochrome P-450 drug-metabolism genes: a gateway to the understanding of plasmodium vivax relapses. PLoS One 11(7):e0160172

    Article  PubMed Central  PubMed  Google Scholar 

  21. Parker LJ, Italiano LC, Morton CJ, Hancock NC, Ascher DB, Aitken JB, Harris HH, Campomanes P, Rothlisberger U, De Luca A, Lo Bello M, Ang WH, Dyson PJ, Parker MW (2011) Studies of glutathione transferase P1-1 bound to a platinum(IV)-based anticancer compound reveal the molecular basis of its activation. Chemistry 17(28):7806–7816

    Article  CAS  PubMed  Google Scholar 

  22. Parker LJ, Bocedi A, Ascher DB, Aitken JB, Harris HH, Lo Bello M, Ricci G, Morton CJ, Parker MW (2017) Glutathione transferase P1-1 as an arsenic drug-sequestering enzyme. Protein Sci 26(2):317–326

    Article  CAS  PubMed  Google Scholar 

  23. Jubb HC, Higueruelo AP, Ochoa-Montano B, Pitt WR, Ascher DB, Blundell TL (2017) Arpeggio: a web server for calculating and visualising interatomic interactions in protein structures. J Mol Biol 429(3):365–371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Pires DE, Blundell TL, Ascher DB (2016) mCSM-lig: quantifying the effects of mutations on protein-small molecule affinity in genetic disease and emergence of drug resistance. Sci Rep 6:29575

    Article  PubMed Central  PubMed  Google Scholar 

  25. Pires DE, Blundell TL, Ascher DB (2015) Platinum: a database of experimentally measured effects of mutations on structurally defined protein-ligand complexes. Nucleic Acids Res 43(Database issue):D387–D391

    Article  CAS  PubMed  Google Scholar 

  26. Phelan J, Coll F, McNerney R, Ascher DB, Pires DE, Furnham N, Coeck N, Hill-Cawthorne GA, Nair MB, Mallard K, Ramsay A, Campino S, Hibberd ML, Pain A, Rigouts L, Clark TG (2016) Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance. BMC Med 14:31

    Article  PubMed Central  PubMed  Google Scholar 

  27. Singh V, Donini S, Pacitto A, Sala C, Hartkoorn RC, Dhar N, Keri G, Ascher DB, Mondésert G, Vocat A, Lupien A, Sommer R, Vermet H, Lagrange S, Buechler J, Warner DF, McKinney JD, Pato J, Cole ST, Blundell TL, Rizzi M, Mizrahi V (2016) The inosine monophosphate dehydrogenase, GuaB2, is a vulnerable new bactericidal drug target for tuberculosis. ACS Infect Dis 3(1):5–17. https://doi.org/10.1021/acsinfecdis.6b00102

    Article  PubMed Central  PubMed  Google Scholar 

  28. Pires DE, Ascher DB, Blundell TL (2014) mCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics 30(3):335–342

    Article  CAS  PubMed  Google Scholar 

  29. Pires DE, Ascher DB, Blundell TL (2014) DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res 42(Web Server issue):W314–W319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Pandurangan AP, Ascher DB, Thomas SE, Blundell TL (2017) Genomes, structural biology, and drug discovery: combating the impacts of mutations in genetic disease and antibiotic resistance. Biochem Soc Trans 45(2):303–311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Pandurangan AP, Ochoa-Montaño B, Ascher DB, Blundell TL (2017) SDM: a server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Res 39(Web Server issue):W215–W222. https://doi.org/10.1093/nar/gkx439

    Google Scholar 

  32. Pires DE, Chen J, Blundell TL, Ascher DB (2016) In silico functional dissection of saturation mutagenesis: interpreting the relationship between phenotypes and changes in protein stability, interactions and activity. Sci Rep 6:19848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Ascher DB, Jubb HC, Pires DEV, Ochi T, Higueruelo A, Blundell TL (2015) Protein-protein interactions: structures and druggability. In: Scapin G, Patel D, Arnold E (eds) Multifaceted roles of crystallography in modern drug discovery. Springer Netherlands, Dordrecht, pp 141–163

    Google Scholar 

  34. Jubb H, Blundell TL, Ascher DB (2015) Flexibility and small pockets at protein-protein interfaces: new insights into druggability. Prog Biophys Mol Biol 119(1):2–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Pires DE, Ascher DB (2017) mCSM-NA: predicting the effects of mutations on protein-nucleic acids interactions. Nucleic Acids Res. https://doi.org/10.1093/nar/gkx236

  36. Pires DE, Ascher DB (2016) mCSM-AB: a web server for predicting antibody-antigen affinity changes upon mutation with graph-based signatures. Nucleic Acids Res 44(W1):W469–W473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Jubb HC, Pandurangan AP, Turner MA, Ochoa-Montano B, Blundell TL, Ascher DB (2017) Mutations at protein-protein interfaces: small changes over big surfaces have large impacts on human health. Prog Biophys Mol Biol 128:3–13. https://doi.org/10.1016/j.pbiomolbio.2016.10.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Jack Brockhoff Foundation (JBF 4186, 2016) and a Newton Fund RCUK-CONFAP Grant awarded by The Medical Research Council (MRC) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) (MR/M026302/1). This research was supported by the Victorian Life Sciences Computation Initiative (VLSCI), an initiative of the Victorian Government, Australia, on its Facility hosted at the University of Melbourne (UOM0017). D.E.V.P. received support from the René Rachou Research Center (CPqRR/FIOCRUZ Minas), Brazil. LMK was supported by a RD Wright Biomedical Career Development Fellowship from the National Health and Medical Research Council of Australia (APP1105383). DBA is supported by a C. J. Martin Research Fellowship from the National Health and Medical Research Council of Australia (APP1072476), and the Department of Biochemistry, University of Melbourne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Ascher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pires, D.E.V., Kaminskas, L.M., Ascher, D.B. (2018). Prediction and Optimization of Pharmacokinetic and Toxicity Properties of the Ligand. In: Gore, M., Jagtap, U. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 1762. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7756-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7756-7_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7755-0

  • Online ISBN: 978-1-4939-7756-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics