Skip to main content

Molecular Dynamics Simulations of Protein–Drug Complexes: A Computational Protocol for Investigating the Interactions of Small-Molecule Therapeutics with Biological Targets and Biosensors

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1762))

Abstract

MD simulations provide a powerful tool for the investigation of protein–drug complexes. The following chapter uses the aryl acylamidase–acetaminophen system as an example to describe a general protocol for preparing and running simulations of protein–drug complexes, complete with a step-by-step tutorial. The described approach is broadly applicable toward the study of drug interactions in the context of both biological targets and biosensing enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee EH, Hsin J, Sotomayor M, Comellas G, Schulten K (2009) Discovery through the computational microscope. Structure 17:1295–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Perilla JR, Goh BC, Keith Cassidy C, Bo L, Bernardi RC, Rudack T, Hang Y, Zhe W, Schulten K (2015) Molecular dynamics simulations of large macromolecular complexes. Curr Opin Struct Biol 31:64–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ebele AJ, Abdallah MA-E, Harrad S (2017) Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerging Contaminants 3(1):1–16

    Article  Google Scholar 

  4. Banica F-G (2012) Chemical sensors and biosensors: fundamentals and applications. John Wiley & Sons, Chichester

    Book  Google Scholar 

  5. Perilla JR, Hadden JA, Goh BC, Mayne CG, Schulten K (2016) All-atom molecular dynamics of virus capsids as drug targets. J Phys Chem Lett 7:1836–1844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dart RC, Green JL (2016) The prescription paradox of acetaminophen safety. Pharmacoepidemiol Drug Saf 25(5):599–601

    Article  PubMed  Google Scholar 

  7. Hinson JA, Roberts DW, James LP (2010) Mechanisms of acetaminophen-induced liver necrosis. Handb Exp Pharmacol 196:369–405

    Article  CAS  Google Scholar 

  8. Yoon E, Babar A, Choudhary M, Kutner M, Pyrsopoulos N (2016) Acetaminophen-induced hepatotoxicity: a comprehensive update. J Clin Transl Hepatol 4(2):131

    PubMed  PubMed Central  Google Scholar 

  9. Michael Bulger, Jan Holinsky (2014) Acetaminophen assay. US Patent 8,715,952, 6 May 2014

    Google Scholar 

  10. Hammond PM, Scawen MD, Tony Atkinson RSC, Price CP (1984) Development of an enzyme-based assay for acetaminophen. Anal Biochem 143(1):152–157

    Article  CAS  PubMed  Google Scholar 

  11. Morris HC, Overton PD, Richard Ramsay J, Stewart Campbell R, Hammond PM, Atkinson T, Price CP (1990) Development and validation of an automated enzyme assay for paracetamol (acetaminophen). Clin Chim Acta 187(2):95–104

    Article  CAS  PubMed  Google Scholar 

  12. Vaughan PA, Scott LDL, McAller JF (1991) Amperometric biosensor for the rapid determination of acetaminophen in whole blood. Anal Chim Acta 248(2):361–365

    Article  CAS  Google Scholar 

  13. Lee S, Park E-H, Ko H-J, Bang WG, Kim H-Y, Kim KH, Choi IG (2015) Crystal structure analysis of a bacterial aryl acylamidase belonging to the amidase signature enzyme family. Biochem Biophys Res Commun 467(2):268–274

    Article  CAS  PubMed  Google Scholar 

  14. Humphrey W, Dalke A, Schulten K (1996) VMD–visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  PubMed  Google Scholar 

  15. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen M-y, Pieper U, Sali A (2006) Comparative protein structure modeling using MODELLER. Cur Protoc Bioinformatics. https://doi.org/10.1002/0471250953.bi0506s15

  17. Das R, Baker D (2008) Macromolecular modeling with ROSETTA. Annu Rev Biochem 77:363–382

    Article  CAS  PubMed  Google Scholar 

  18. Wriggers W (2010) Using situs for the integration of multi-resolution structures. Biophys Rev 2:21–27

    Article  PubMed  PubMed Central  Google Scholar 

  19. Trabuco LG, Villa E, Mitra K, Frank J, Schulten K (2008) Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16:673–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Goh BC, Hadden JA, Bernardi RC, Singharoy A, McGreevy R, Rudack T, Keith Cassidy C, Schulten K (2016) Computational methodologies for real-space structural refinement of large macromolecular complexes. Annu Rev Biophys 45:253–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Trott O, Olson AJ (2010) Autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pagadala NS, Syed K, Tuszynski J (2017) Software for molecular docking: a review. Biophys Rev 9(2):91–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, Klebe G, Baker NA (2007) PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res 35(Web Server):W522–W525

    Article  PubMed  PubMed Central  Google Scholar 

  24. Søndergaard CR, Olsson MHM, Rostkowski M l, Jensen JH (2011) Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. J Chem Theory Comput 7(7):2284–2295

    Article  PubMed  Google Scholar 

  25. Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS, An J, Lamperti ED, Koh KP, Ganetzky R, Shirley Liu X, Aravind L, Agarwal S, Maciejewski JP, Rao A (2010) Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468:839–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  CAS  Google Scholar 

  27. Onufriev A (2008) Implicit solvent models in molecular dynamics simulations: a brief overview. Annu Rep Comput Chem 4:125–137

    Article  CAS  Google Scholar 

  28. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  PubMed  Google Scholar 

  29. MacKerell AD Jr, Feig M, Brooks CL (2004) Improved treatment of the protein backbone in empirical force fields. J Am Chem Soc 126:698–699

    Article  CAS  PubMed  Google Scholar 

  30. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Developing and testing of a general amber force field. J Comput Chem 25(9):1157–1174

    Article  CAS  PubMed  Google Scholar 

  31. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, MacKerell AD Jr (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Vanommeslaeghe K, MacKerell AD Jr (2012) Automation of the CHARMM general force field (CGenFF) I: bond perception and atom typing. J Chem Inf Model 52(12):3144–3154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vanommeslaeghe K, Prabhu Raman E, MacKerell AD Jr (2012) Automation of the CHARMM general force field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J Chem Inf Model 52(12):3155–3168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maestro Release 2017-2: MacroModel, Schrödinger, LLC, New York, NY, 2017

    Google Scholar 

  35. Mayne CG, Saam J, Schulten K, Tajkhorshid E, Gumbart JC (2013) Rapid parameterization of small molecules using the force field toolkit. J Comput Chem 34:2757–2770

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the University of Delaware and the National Institutes of Health COBRE grant 5P30GM110758-04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jodi A. Hadden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hadden, J.A., Perilla, J.R. (2018). Molecular Dynamics Simulations of Protein–Drug Complexes: A Computational Protocol for Investigating the Interactions of Small-Molecule Therapeutics with Biological Targets and Biosensors. In: Gore, M., Jagtap, U. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 1762. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7756-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7756-7_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7755-0

  • Online ISBN: 978-1-4939-7756-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics