Skip to main content

Computer-Aided Drug Design: An Overview

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1762))

Abstract

The term drug design describes the search of novel compounds with biological activity, on a systematic basis. In its most common form, it involves modification of a known active scaffold or linking known active scaffolds, although de novo drug design (i.e., from scratch) is also possible. Though highly interrelated, identification of active scaffolds should be conceptually separated from drug design. Traditionally, the drug design process has focused on the molecular determinants of the interactions between the drug and its known or intended molecular target. Nevertheless, current drug design also takes into consideration other relevant processes than influence drug efficacy and safety (e.g., bioavailability, metabolic stability, interaction with antitargets).

This chapter provides an overview on possible approaches to identify active scaffolds (including in silico approximations to approach that task) and computational methods to guide the subsequent optimization process. It also discusses in which situations each of the overviewed techniques is more appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klabunde T, Everts A (2005) GPCR antitarget modeling: pharmacophore models for biogenic amine binding GPCRs to avoid GPCR-mediated side effects. Chembiochem 6:876–889

    Article  CAS  PubMed  Google Scholar 

  2. Raschi E, Vasina V, Poluzzi E, De Ponti F (2008) The hERG K+ channel: target and antitarget strategies in drug development. Pharmacol Res 57:181–195

    Article  CAS  PubMed  Google Scholar 

  3. Crivori P (2008) Computational models for P-glycoprotein substrates and inhibitors. In: Vaz RJ, Klabunde T (eds) Anti-targets: prediction and prevention of drug side effects. Wiley-VCH, Weinheim

    Google Scholar 

  4. Zamora I (2008) Site of metabolism predictions: facts and experiences. In: Vaz RJ, Klabunde T (eds) Anti-targets: prediction and prevention of drug side effects. Wiley-VCH, Weinheim

    Google Scholar 

  5. Hartenfeller M, Schneider G (2011) De novo drug design. Methods Mol Biol 672:299–323

    Article  CAS  PubMed  Google Scholar 

  6. Nicolaou CA, Brown N (2013) Multi-objective optimization methods in drug design. Drug Discov Today Technol 10:e427-e435

    Article  Google Scholar 

  7. Talevi A (2016) Tailored multi-target agents. Applications and design considerations. Curr Pharm Des 22:3164–3170

    Article  CAS  PubMed  Google Scholar 

  8. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  9. Pajouhesh H, Lenz GR (2005) Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2:542–553

    Article  Google Scholar 

  10. Gupta S, Kesarla R, Omri A (2013) Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems. ISRN Pharm 2013(848043)

    Google Scholar 

  11. Miller DC, Klute W, Calabrese A, Brown AD (2009) Optimising metabolic stability in lipophilic chemical space: the identification of a metabolic stable pyrazolopyrimidine CRF-1 receptor antagonist. Bioorg Med Chem Lett 19:6144–6147

    Article  CAS  PubMed  Google Scholar 

  12. Wager TT, Hou X, Verhoest PR, Villalobos A (2010) Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem Neurosci 1:435–449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. He X (2009) Integration of physical, chemical, mechanical and biopharmaceutical properties in solid dosage oral form development. In: Qiu Y, Chen Y, Zhang GGZ, Liu L, Porter WR (eds) Developing solid dosage oral forms: pharmaceutical theory and practice, 1st edn. Academic press, Burlington

    Google Scholar 

  14. Gashaw I, Ellinghaus P, Sommer A, Asadullah K (2011) What makes a good drug target. Drug Discov Today 16:1037–1043

    Article  CAS  PubMed  Google Scholar 

  15. Knowles J, Gromo G (2003) Target selection in drug discovery. Nat Rev Drug Discov 2:63–69

    Article  CAS  PubMed  Google Scholar 

  16. Schmidtke P, Barril X (2010) Understanding and predicting druggability. A high-throughput method for detection of drug binding sites. J Med Chem 53:5858–5867

    Article  CAS  PubMed  Google Scholar 

  17. Yuan Y, Pei J, Lai L (2013) Binding site detection and druggability prediction of protein targets for structure-based drug design. Curr Pharm Des 19:2326–2333

    Article  CAS  PubMed  Google Scholar 

  18. Barril X (2013) Druggability predictions: methods, limitations and applications. WIREs Comput Mol Sci 3:327–338

    Article  CAS  Google Scholar 

  19. Smith RB (2011) Repositioned drugs: integrating intellectual property and regulatory strategies. Drug Discov Today Ther Strateg 8:131–137

    Article  Google Scholar 

  20. Novac N (2013) Challenges and opportunities of drug repositioning. Trends Pharmacol Sci 34:267–272

    Article  CAS  PubMed  Google Scholar 

  21. Szymanski P, Markowicz M, Mikiciuk-Olasik E (2012) Adaptation of high-throughput screening in drug discovery - toxicological screening. Int J Mol Sci 13:427–452

    Article  CAS  PubMed  Google Scholar 

  22. Harris CJ, Hill RD, Sheppard DW, Slater MJ, Stouten PF (2011) The design and application of target-focused compound libraries. Comb Chem High Throughput Screen 14:521–531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Welsch ME, Snyder SA, Stockwell BR (2010) Privileged scaffolds for library design and drug discovery. Curr Opin Chem Biol 14:347–361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Procacci P (2016) Reformulating the entropic contribution of molecular docking scoring functions. J Comput Chem 37:1819–1827

    Article  CAS  PubMed  Google Scholar 

  25. Gilson MK, Zhou HX (2007) Calculation of protein-ligand binding affinities. Annu Rev Biophys Biomol Struct 36:21–42

    Article  CAS  PubMed  Google Scholar 

  26. Bello M, Martínez-Archundia M, Correa-Basurto J (2013) Automated docking for novel drug discovery. Expert Opin Drug Discov 8:821–834

    Article  CAS  PubMed  Google Scholar 

  27. Bodnarchuck MS (2016) Water, water, everywhere… It’s time to stop and think. Drug Discov Today 21:1139–1146

    Article  Google Scholar 

  28. Mysinger MM, Schoichet BK (2010) Rapid context-dependent ligand desolvation in molecular docking. J Chem Inf Model 50:1561–1573

    Article  CAS  PubMed  Google Scholar 

  29. Ge H, Wang Y, Li C et al (2013) Molecular dynamics-based virtual screening: accelerating the drug discovery process by high-performance computing. J Chem Inf Model 53:2757–2764

    Article  CAS  PubMed  Google Scholar 

  30. Wang L, Wu Y, Deng Y et al (2015) Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J Am Chem Soc 137:2695–2703

    Article  CAS  PubMed  Google Scholar 

  31. Lavechia A (2015) Machine-learning approaches in drug discovery: methods and applications. Drug Discov Today 20:318–331

    Article  Google Scholar 

  32. Lemmen C, Zimmermann M, Lengauer T (2002) Multiple molecular superpositioning as an effective tool for virtual database screening. In: Klebe G (ed) Virtual screening: an alternative or complement to high-throughput screening? 1st edn. Kluwer Academic Publishers, Marburg

    Google Scholar 

  33. Kristensen TG, Nielsen J, Pedersen CNS (2013) Methods for similarity-based virtual screening. Comput Struct Biotechnol J 5:e201302009

    Article  PubMed Central  PubMed  Google Scholar 

  34. Talevi A, Bruno-Blanch LE (2016) Virtual screening applications in the search of novel antiepileptic drug candidates. In: Talevi A, Rocha L (eds) Antiepileptic drug discovery. Novel Approaches. Humana Press, New York

    Chapter  Google Scholar 

  35. Schneidman-Duhovny D, Dror O, Inbar Y, Nussinov R, Wolfson HJ (2008) Deterministic pharmacophore detection via multiple flexible alignment of drug-like molecules. J Comput Biol 15:737–754

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Cottrell SJ, Gillet VJ, Taylor R, Wilton DJ (2004) Generation of multiple pharmacophore hypothesis using multiobjective optimization techniques. J Comput Aided Mol Des 18:665–682

    Article  CAS  PubMed  Google Scholar 

  37. Pirhadi S, Shiri F, Ghasemi JB (2013) Methods and applications of structure based pharmacophores in drug discovery. Curr Top Med Chem 13:1036–1047

    Article  CAS  PubMed  Google Scholar 

  38. Zhang Q, Muegge I (2006) Scaffold hopping through virtual screening using 2D and 3D similarity descriptors: ranking, voting, and consensus scoring. J Med Chem 9:1536–1548

    Article  Google Scholar 

  39. Krüger DM, Evers A (2010) Comparison of structure- and ligand-based virtual screening protocols considering hit list complementarity and enrichment factors. ChemMedChem 5:148–158

    Article  PubMed  Google Scholar 

  40. Talevi A, Gavernet L, Bruno-Blanch LE (2009) Combined virtual screening strategies. Curr Comput Aided Drug Des 5:23–37

    Article  CAS  Google Scholar 

  41. Pouliot M, Jeanmart S (2016) Pan assay interference compounds (PAINS) and other promiscuous compounds in antifungal research. J Med Chem 59:497–503

    Article  CAS  PubMed  Google Scholar 

  42. Walters WP, Stahl MT, Murcko MA (1998) Virtual screening – an overview. Drug Discov Today 3:160–178

    Article  CAS  Google Scholar 

  43. Zhu T, Cao S, Su PC, Patel R, Shah D, Chokshi HB, Szukala R, Johnson ME, Hevener KE (2013) Hit identification and optimization in virtual screening: practical recommendations based upon a critical literature analysis. J Med Chem 56:6560–6572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Ripphausen P, Nisius B, Pletason L, Bajorath J (2010) Quo vadis, virtual screening? A comprehensive survey of prospective applications. J Med Chem 53:8461–8467

    Article  CAS  PubMed  Google Scholar 

  45. Neetoo-Isseliee Z, MacKenzie AE, Southern C, Jerman J, McIver EG, Harries N, Taylor DL, Milligan G (2013) High-throughput identification and characterization of novel, species-selective GPR35 agonists. J Pharmacol Exp Ther 344:568–578

    Article  Google Scholar 

  46. Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nature Rev Drug Discov 3:711–716

    Article  CAS  Google Scholar 

  47. Schuster D, Laggner C, Langer T (2005) Why drugs fail – a study on side effects in new chemical entities. Curr Pharm Des 11:3545–3559

    Article  CAS  PubMed  Google Scholar 

  48. Talevi A (2016) Computatonal approaches for innovative antiepileptic drug discovery. Expert Opin Drug Discov 11:1001–1016

    Article  CAS  PubMed  Google Scholar 

  49. Brown N, Lewis RA (2006) Exploiting QSAR methods in lead optimization. Curr Opin Drug Discov Devel 9:419–424

    CAS  PubMed  Google Scholar 

  50. Wong WWL, Burkowski FJ (2009) A constructive approach for discovering new drug leads: using a kernel methodology for the inverse-QSAR problem. J Cheminform 1:4

    Article  PubMed Central  PubMed  Google Scholar 

  51. Miyako T, Kaneko H, Funatsu K (2016) Inverse QSPR/QSAR analysis for chemical structure generation (from y to x). J Chem Inf Model 56:286–299

    Article  Google Scholar 

  52. Waring MJ, Arrowsmith J, Leach AR et al (2015) An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov 14:475–486

    Article  CAS  PubMed  Google Scholar 

  53. Cook D, Brown D, Alexander R, March R, Morgan P, Satterthwaite G, Pangalos MN (2014) Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat Rev Drug Discov 13:419–431

    Article  CAS  PubMed  Google Scholar 

  54. Roberts RA, Kavanagh SL, Mellor HR, Pollard CE, Robinson S, Platz SJ (2014) Reducing attrition in drug development: smart loading preclinical safety assessment. Drug Discov Today 19:341–347

    Article  CAS  PubMed  Google Scholar 

  55. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623

    Article  CAS  PubMed  Google Scholar 

  56. Price DA, Blagg J, Jones L, Greene N, Wager T (2009) Physicochemical drug properties associated with in vivo toxicological outcomes: a review. Expert Opin Drug Metab Toxicol 5:921–931

    Article  CAS  PubMed  Google Scholar 

  57. Sutherland JJ, Raymond JW, Stevens JL, Baker TK, Watson DE (2012) Relating molecular properties and in vitro assay results to in vivo drug disposition and toxicity outcomes. J Med Chem 55:6455–6466

    Article  CAS  PubMed  Google Scholar 

  58. Doak BC, Zheng J, Dobritzsch D, Kihlberg J (2016) How beyond rule of 5 drugs and clinical candidates bind to their targets. J Med Chem 59:2312–2327

    Article  CAS  PubMed  Google Scholar 

  59. Doak BC, Over B, Giordanetto F, Kihlberg J (2014) Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. Chem Biol 21:1115–1142

    Article  CAS  PubMed  Google Scholar 

  60. Lipinski CA (2016) Rule of five in 2015 and beyond: target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv Drug Deliv Rev 101:34–41

    Article  CAS  PubMed  Google Scholar 

  61. Bergström CAS, Charman WN, Porter CJH (2016) Computational prediction of formulation strategies for beyond-rule-of-5 compounds. Adv Drug Deliv Rev 101:6–21

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks CONICET and University of La Plata, where he holds permanent positions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Talevi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Talevi, A. (2018). Computer-Aided Drug Design: An Overview. In: Gore, M., Jagtap, U. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 1762. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7756-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7756-7_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7755-0

  • Online ISBN: 978-1-4939-7756-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics