Skip to main content

Methods for Measuring the Production of Quorum Sensing Signal Molecules

  • Protocol
  • First Online:
Antibiotic Resistance Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1736))

Abstract

One relevant aspect for understanding the bottlenecks that modulate the spread of resistance among bacterial pathogens consists in the effect that the acquisition of resistance may have on the microbial physiology . Whereas studies on the effect of acquiring resistance of bacterial growth are frequently performed, more detailed analyses aiming to understand in depth the cross talk between resistance and virulence, including bacterial communication are less frequent. The bacterial quorum sensing system, is an important intraspecific and interspecific communication system highly relevant for many physiological processes, including virulence and bacterial/host interactions. Some works have shown that the acquisition of antibiotic resistance may impair the quorum sensing response. In addition, some antibiotics as antimicrobial peptides can affect the production and accumulation of the quorum sensing signal molecules. Given the relevance that this system has in the bacterial behavior in the human host, it is important to study the effect that the acquisition of antibiotic resistance may have on the production of quorum sensing signals. In this chapter we present a set of methods for measuring quorum sensing signals based on the use of biosensor strains, either coupled to Thin Layer Chromatography or for performing automated luminometry/spectrophotometry assays. We use Pseudomonas aeruginosa as bacterial model because it has a complex quorum system than encloses different signals. Namely, P. aeruginosa quorum sensing system consists in three different interconnected regulatory networks, each one presenting a specific autoinducer molecule: the las system, which signal is N-(3-oxo-dodecanoyl)-l-homoserine lactone, the rhl system, which signal is N-butanoyl-homoserine lactone and the pqs system, which signals are 2-heptyl-3-hydroxy-4(1H)-quinolone together with its immediate precursor 2-heptyl-4-hydroxy-quinoline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersson DI, Levin BR (1999) The biological cost of antibiotic resistance. Curr Opin Microbiol 2:489–493. https://doi.org/10.1016/S1369-5274(99)00005-3

    Article  CAS  PubMed  Google Scholar 

  2. Andersson DI, Hughes D (2010) Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 8:260–271. https://doi.org/10.1038/nrmicro2319

    Article  CAS  PubMed  Google Scholar 

  3. Shcherbakov D, Akbergenov R, Matt T et al (2010) Directed mutagenesis of Mycobacterium smegmatis 16S rRNA to reconstruct the in-vivo evolution of aminoglycoside resistance in Mycobacterium tuberculosis. Mol Microbiol 77:830–840. https://doi.org/10.1111/j.1365-2958.2010.07218.x

    Article  CAS  PubMed  Google Scholar 

  4. Olivares J, Álvarez-Ortega C, Martinez JL (2014) Metabolic compensation of fitness costs associated with overexpression of the multidrug efflux pump MexEF-OprN in Pseudomonas aeruginosa. Antimicrob Agents Chemother 58:3904–3913. https://doi.org/10.1128/AAC.00121-14

    Article  PubMed  PubMed Central  Google Scholar 

  5. Olivares J, Alvarez-Ortega C, Linares JF et al (2012) Overproduction of the multidrug efflux pump MexEF-OprN does not impair Pseudomonas aeruginosa fitness in competition tests, but produces specific changes in bacterial regulatory networks. Environ Microbiol 14:1968–1981. https://doi.org/10.1111/j.1462-2920.2012.02727.x

    Article  CAS  PubMed  Google Scholar 

  6. Köhler T, van Delden C (2001) Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa. J Bacteriol 183:5213–5222. https://doi.org/10.1128/JB.183.18.5213

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pearson J, Van Delden C, Iglewski B (1999) Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181:1203–1210

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Aendekerk S, Diggle SP, Song Z et al (2005) The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication. Microbiology 151:1113–1125. https://doi.org/10.1099/mic.0.27631-0

    Article  CAS  PubMed  Google Scholar 

  9. Minagawa S, Inami H, Kato T et al (2012) RND type efflux pump system MexAB-OprM of Pseudomonas aeruginosa selects bacterial languages, 3-oxo-acyl-homoserine lactones, for cell-to-cell communication. BMC Microbiol 12:70. https://doi.org/10.1186/1471-2180-12-70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moore JD, Gerdt JP, Eibergen NR, Blackwell HE (2014) Active efflux influences the potency of quorum sensing inhibitors in Pseudomonas aeruginosa. Chembiochem 15:435–442. https://doi.org/10.1002/cbic.201300701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Williams P, Cámara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12:182–191. https://doi.org/10.1016/j.mib.2009.01.005

    Article  CAS  PubMed  Google Scholar 

  12. Withers H, Swift S, Williams P (2001) Quorum sensing as an integral component of gene regulatory networks in gram-negative bacteria. Curr Opin Microbiol 4:186–193. https://doi.org/10.1016/S1369-5274(00)00187-9

    Article  CAS  PubMed  Google Scholar 

  13. Swift S, Downie JA, Whitehead NA et al (2001) Quorum sensing as a population-density-dependent determinant of bacterial physiology. Adv Microb Physiol 45:199–270

    Article  CAS  PubMed  Google Scholar 

  14. Miller M, Bassler B (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199. https://doi.org/10.1146/annurev.micro.55.1.165

    Article  CAS  PubMed  Google Scholar 

  15. Schuster M, Greenberg EP (2006) A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol 296:73–81. https://doi.org/10.1016/j.ijmm.2006.01.036

    Article  CAS  PubMed  Google Scholar 

  16. Mangwani N, Dash HR, Chauhan A, Das S (2012) Bacterial quorum sensing: functional features and potential applications in biotechnology. J Mol Microbiol Biotechnol 22:215–227. https://doi.org/10.1159/000341847

    Article  CAS  PubMed  Google Scholar 

  17. Reading NC, Sperandio V (2006) Quorum sensing: the many languages of bacteria. FEMS Microbiol Lett 254:1–11. https://doi.org/10.1111/j.1574-6968.2005.00001.x

    Article  CAS  PubMed  Google Scholar 

  18. Nealson K, Platt T, Hastings J (1970) Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104:313–322

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Nealson K, Hastings J (1979) Bacterial bioluminescence: its control and ecological significance. Microbiol Rev 43:496–518

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Keller L, Surette MG (2006) Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 4:249–258. https://doi.org/10.1038/nrmicro1383

    Article  CAS  PubMed  Google Scholar 

  21. Williams P, Winzer K, Chan WC, Cámara M (2007) Look who’s talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc Lond Ser B Biol Sci 362:1119–1134. https://doi.org/10.1098/rstb.2007.2039

    Article  CAS  Google Scholar 

  22. Jayaraman A, Wood TK (2008) Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease. Annu Rev Biomed Eng 10:145–167. https://doi.org/10.1146/annurev.bioeng.10.061807.160536

    Article  CAS  PubMed  Google Scholar 

  23. Martínez JL (2014) Interkingdom signaling and its consequences for human health. Virulence 5:243–244. https://doi.org/10.4161/viru.28073

    Article  PubMed  PubMed Central  Google Scholar 

  24. Williams P (2007) Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153:3923–3938. https://doi.org/10.1099/mic.0.2007/012856-0

    Article  CAS  PubMed  Google Scholar 

  25. Shaw P, Ping G, Daly S (1997) Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci U S A 94:6036–6041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yates EA, Philipp B, Buckley C et al (2002) N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 70:5635–5646. https://doi.org/10.1128/IAI.70.10.5635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Winson M, Swift S, Fish L (1998) Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol Lett 163:185–192

    Article  CAS  PubMed  Google Scholar 

  28. Smith RS, Fedyk ER, Springer TA et al (2001) IL-8 production in human lung fibroblasts and epithelial cells activated by the Pseudomonas autoinducer N-3-oxododecanoyl homoserine lactone is transcriptionally regulated by NF-kappa B and activator protein-2. J Immunol 167:366–374. https://doi.org/10.4049/jimmunol.167.1.366

    Article  CAS  PubMed  Google Scholar 

  29. Zimmermann S, Wagner C, Müller W et al (2006) Induction of neutrophil chemotaxis by the quorum-sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone. Infect Immun 74:5687–5692. https://doi.org/10.1128/IAI.01940-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wagner C, Zimmermann S, Brenner-Weiss G et al (2007) The quorum-sensing molecule N-3-oxododecanoyl homoserine lactone (3OC12-HSL) enhances the host defence by activating human polymorphonuclear neutrophils (PMN). Anal Bioanal Chem 387:481–487. https://doi.org/10.1007/s00216-006-0698-5

    Article  CAS  PubMed  Google Scholar 

  31. Diggle SP, Matthijs S, Wright VJ et al (2007) The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14:87–96. https://doi.org/10.1016/j.chembiol.2006.11.014

    Article  CAS  PubMed  Google Scholar 

  32. Steindler L, Venturi V (2007) Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiol Lett 266:1–9. https://doi.org/10.1111/j.1574-6968.2006.00501.x

    Article  CAS  PubMed  Google Scholar 

  33. Fletcher MP, Diggle SP, S a C et al (2007) A dual biosensor for 2-alkyl-4-quinolone quorum-sensing signal molecules. Environ Microbiol 9:2683–2693. https://doi.org/10.1111/j.1462-2920.2007.01380.x

    Article  CAS  PubMed  Google Scholar 

  34. McClean K, Winson M, Fish L (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143(Pt 12):3703–3711

    Article  CAS  PubMed  Google Scholar 

  35. Diggle SP, Winzer K, Lazdunski A et al (2002) Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J Bacteriol 184:2576–2586. https://doi.org/10.1128/JB.184.10.2576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Winzer K, Falconer C, Garber NC et al (2000) The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. J Bacteriol 182:6401–6411. https://doi.org/10.1128/JB.182.22.6401-6411.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Swift S, Karlyshev A, Fish L (1997) Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine. J Bacteriol 179:5271–5281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work in our laboratory is supported by grants BIO2011-25255 and BIO2014-54507-R from the Spanish Ministry of Economy and Competitiveness, S2010/BMD2414 (PROMPT) from CAM, Spanish Network for Research on Infectious Diseases (REIPI RD12/0015) from the Instituto de Salud Carlos III, and HEALTH-F3-2011-282004 (EVOTAR) from the European Union. MAR has been the recipient of an FPI fellowship. Special thanks are given to Miguel Cámara, Paul Williams, and Robert Hancock for providing control strains and QSSMs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alcalde-Rico, M., Martínez, J.L. (2018). Methods for Measuring the Production of Quorum Sensing Signal Molecules. In: Gillespie, S. (eds) Antibiotic Resistance Protocols. Methods in Molecular Biology, vol 1736. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7638-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7638-6_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7636-2

  • Online ISBN: 978-1-4939-7638-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics