Skip to main content

Screening miRNA for Functional Significance by 3D Cell Culture System

  • Protocol
  • First Online:
MicroRNA Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1733))

Abstract

Cell-based assays play important roles in cell biology and drug discovery. 3D cell culture, which allows cells to grow or interact with their surrounding in all three dimensions, provides more physiological information for the in vivo tests. Here, we describe a tunable collagen-based 3D cell culture system based on collagen material crosslinked with transgluminase, to study the function of miR. Methods including gel handling, proliferation assays, gene, and protein expressions in a 3D setting are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ling H, Fabbri M, Calin GA (2013) MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 12(11):847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Doench JG, Sharp PA (2004) Specificity of microRNA target selection in translational repression. Genes Dev 18(5):504–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nilsen TW (2007) Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet 23(5):243–249

    Article  CAS  PubMed  Google Scholar 

  4. Guo H-S et al (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17(5):1376–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4(3):143–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Esquela-Kerscher A, Slack FJ (2006) Oncomirs--microRNAs with a role in cancer. Nat Rev Cancer 6(4):259

    Article  CAS  PubMed  Google Scholar 

  7. Baker BM, Chen CS (2012) Deconstructing the third dimension–how 3D culture microenvironments alter cellular cues. J Cell Sci 125(13):3015–3024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fang JY et al (2014) Tumor bioengineering using a transglutaminase crosslinked hydrogel. PLoS One 9(8):e105616

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kuwahara K et al (2009) Cell delivery using an injectable and adhesive transglutaminase–gelatin gel. Tissue Eng Part C Methods 16(4):609–618

    Article  Google Scholar 

  10. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162(1):156–159

    Article  CAS  PubMed  Google Scholar 

  11. Tan S et al (2014) The synergetic effect of hydrogel stiffness and growth factor on osteogenic differentiation. Biomaterials 35(20):5294–5306

    Article  CAS  PubMed  Google Scholar 

  12. Fang JY et al (2016) From competency to dormancy: a 3D model to study cancer cells and drug responsiveness. J Transl Med 14(1):38

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bax DV et al (2009) Cell adhesion to tropoelastin is mediated via the C-terminal GRKRK motif and integrin αVβ3. J Biol Chem 284(42):28616–28623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Phillips JE et al (2010) Human mesenchymal stem cell differentiation on self-assembled monolayers presenting different surface chemistries. Acta Biomater 6(1):12–20

    Article  CAS  PubMed  Google Scholar 

  15. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Engler AJ et al (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Article  CAS  PubMed  Google Scholar 

  17. Nemir S, West JL (2010) Synthetic materials in the study of cell response to substrate rigidity. Ann Biomed Eng 38(1):2–20

    Article  PubMed  Google Scholar 

  18. Rowlands AS, George PA, Cooper-White JJ (2008) Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. Am J Phys Cell Phys 295(4):C1037–C1044

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Han, B. (2018). Screening miRNA for Functional Significance by 3D Cell Culture System. In: Ying, SY. (eds) MicroRNA Protocols . Methods in Molecular Biology, vol 1733. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7601-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7601-0_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7600-3

  • Online ISBN: 978-1-4939-7601-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics