Skip to main content

Identification of Driver Mutations in Rare Cancers: The Role of SMARCA4 in Small Cell Carcinoma of the Ovary, Hypercalcemic Type (SCCOHT)

  • Protocol
  • First Online:
Disease Gene Identification

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1706))

Abstract

Cancer is a complex genetic disease that can arise through the stepwise accumulation of mutations in oncogenes and tumor suppressor genes in a variety of different tissues. While the varied landscapes of mutations driving common cancer types such as lung, breast, and colorectal cancer have been comprehensively charted, the genetic underpinnings of many rare cancers remain poorly defined. Study of rare cancers faces unique methodological challenges, but collaborative enterprises that incorporate next generation sequencing, reach across disciplines (i.e., pathology, genetic epidemiology, genomics, functional biology, and preclinical modeling), engage advocacy groups, tumor registries, and clinical specialists are adding increasing resolution to the genomic landscapes of rare cancers. Here we describe the approaches and methods used to identify SMARCA4 mutations, which drive development of the rare ovarian cancer, small cell carcinoma of the ovary, hypercalcemic type (SCCOHT), and point to the broader relevance of this paradigm for future research in rare cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Greenlee RT, Goodman MT, Lynch CF et al (2010) The occurrence of rare cancers in US adults, 1995-2004. Public Health Rep 125:28–43

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gatta G, van der Zwan JM, Casali PG et al (2011) Rare cancers are not so rare: the rare cancer burden in Europe. Eur J Cancer 47(17):2493–2511. https://doi.org/10.1016/j.ejca.2011.08.008

    Article  PubMed  Google Scholar 

  3. Bogaerts J, Sydes MR, Keat N et al (2015) Clinical trial designs for rare diseases: studies developed and discussed by the International Rare Cancers Initiative. Eur J Cancer 51(3):271–281. https://doi.org/10.1016/j.ejca.2014.10.027

    Article  PubMed  PubMed Central  Google Scholar 

  4. Boyd N, Dancey JE, Gilks CB et al (2016) Rare cancers: a sea of opportunity. Lancet Oncol 17(2):e52–e61

    Article  PubMed  Google Scholar 

  5. Knudson AG (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 68(4):820–823

    Article  PubMed  PubMed Central  Google Scholar 

  6. Friend SH, Bernards R, Rogelj S et al (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323(6089):643–646

    Article  CAS  PubMed  Google Scholar 

  7. Broaddus E, Topham A, Singh AD (2009) Incidence of retinoblastoma in the USA: 1975–2004. Br J Ophthalmol 93(1):21–23

    Article  CAS  PubMed  Google Scholar 

  8. MacCarthy A, Birch J, Draper G et al (2009) Retinoblastoma in Great Britain 1963–2002. Br J Ophthalmol 93(1):33–37

    Article  CAS  PubMed  Google Scholar 

  9. Scully RE (1979) Tumors of the ovary and maldeveloped gonads. Atlas of tumor pathology, vol 2. Armed Forces Institute of Pathology, Washington, DC. ser, fasc 16

    Google Scholar 

  10. Witkowski L, Goudie C, Ramos P et al (2016) The influence of clinical and genetic factors on patient outcome in small cell carcinoma of the ovary, hypercalcemic type. Gynecol Oncol 141(3):454–460. https://doi.org/10.1016/j.ygyno.2016.03.013

    Article  PubMed  Google Scholar 

  11. Martinez-Borges AR, Petty JK, Hurt G et al (2009) Familial small cell carcinoma of the ovary. Pediatr Blood Cancer 53(7):1334–1336. https://doi.org/10.1002/pbc.22184

    Article  PubMed  Google Scholar 

  12. Stephens B, Anthony SP, Han H et al (2012) Molecular characterization of a patient’s small cell carcinoma of the ovary of the hypercalcemic type. J Cancer 3:58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gamwell LF, Gambaro K, Merziotis M et al (2013) Small cell ovarian carcinoma: genomic stability and responsiveness to therapeutics. Orphanet J Rare Dis 8:33

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kupryjanczyk J, Dansonka-Mieszkowska A, Moes-Sosnowska J et al (2013) Ovarian small cell carcinoma of hypercalcemic type - evidence of germline origin and SMARCA4 gene inactivation. A pilot study. Pol J Pathol 64(4):238–246

    Article  CAS  PubMed  Google Scholar 

  15. Jelinic P, Mueller JJ, Olvera N et al (2014) Recurrent SMARCA4 mutations in small cell carcinoma of the ovary. Nat Genet 46(5):424–426. https://doi.org/10.1038/ng.2922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ramos P, Karnezis AN, Craig DW et al (2014) Small cell carcinoma of the ovary, hypercalcemic type, displays frequent inactivating germline and somatic mutations in SMARCA4. Nat Genet 46(5):427–429. https://doi.org/10.1038/ng.2928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ramos P, Karnezis AN, Hendricks WP et al (2014) Loss of the tumor suppressor SMARCA4 in small cell carcinoma of the ovary, hypercalcemic type (SCCOHT). Rare Dis 2(1):e967148

    Article  PubMed  PubMed Central  Google Scholar 

  18. Witkowski L, Carrot-Zhang J, Albrecht S et al (2014) Germline and somatic SMARCA4 mutations characterize small cell carcinoma of the ovary, hypercalcemic type. Nat Genet 46(5):438–443. https://doi.org/10.1038/ng.2931

    Article  CAS  PubMed  Google Scholar 

  19. Jelinic P, Schlappe BA, Conlon N et al (2015) Concomitant loss of SMARCA2 and SMARCA4 expression in small cell carcinoma of the ovary, hypercalcemic type. Mod Pathol 29(1):60–66

    Article  PubMed  PubMed Central  Google Scholar 

  20. Karnezis AN, Wang Y, Ramos P et al (2016) Dual loss of the SWI/SNF complex ATPases SMARCA4/BRG1 and SMARCA2/BRM is highly sensitive and specific for small cell carcinoma of the ovary, hypercalcaemic type. J Pathol 238(3):389–400

    Article  CAS  PubMed  Google Scholar 

  21. Shah SP, Köbel M, Senz J et al (2009) Mutation of FOXL2 in granulosa-cell tumors of the ovary. N Engl J Med 360(26):2719–2729

    Article  CAS  PubMed  Google Scholar 

  22. Tiacci E, Trifonov V, Schiavoni G et al (2011) BRAF mutations in hairy-cell leukemia. N Engl J Med 364(24):2305–2315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Choy E, MacConaill LE, Cote GM et al (2014) Genotyping cancer-associated genes in chordoma identifies mutations in oncogenes and areas of chromosomal loss involving CDKN2A, PTEN, and SMARCB1. PLoS One 9(7):e101283

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ulbright TM, Roth LM, Stehman FB et al (1987) Poorly differentiated (small cell) carcinoma of the ovary in young women: evidence supporting a germ cell origin. Hum Pathol 18(2):175–184

    Article  CAS  PubMed  Google Scholar 

  25. Peccatori F, Bonazzi C, Lucchini V et al (1993) Primary ovarian small cell carcinoma: four more cases. Gynecol Oncol 49(1):95–99. https://doi.org/10.1006/gyno.1993.1093

    Article  CAS  PubMed  Google Scholar 

  26. Lamovec J, Bracko M, Cerar O (1995) Familial occurrence of small-cell carcinoma of the ovary. Arch Pathol Lab Med 119(6):523–527

    CAS  PubMed  Google Scholar 

  27. Longy M, Toulouse C, Mage P et al (1996) Familial cluster of ovarian small cell carcinoma: a new mendelian entity? J Med Genet 33(4):333–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Distelmaier F, Calaminus G, Harms D et al (2006) Ovarian small cell carcinoma of the hypercalcemic type in children and adolescents: a prognostically unfavorable but curable disease. Cancer 107(9):2298–2306. https://doi.org/10.1002/cncr.22213

    Article  PubMed  Google Scholar 

  29. McDonald JM, Karabakhtsian RG, Pierce HH et al (2012) Small cell carcinoma of the ovary of hypercalcemic type: a case report. J Pediatr Surg 47(3):588–592. https://doi.org/10.1016/j.jpedsurg.2011.12.004

    Article  PubMed  Google Scholar 

  30. Eaton KW, Tooke LS, Wainwright LM et al (2011) Spectrum of SMARCB1/INI1 mutations in familial and sporadic rhabdoid tumors. Pediatr Blood Cancer 56(1):7–15

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hasselblatt M, Gesk S, Oyen F et al (2011) Nonsense mutation and inactivation of SMARCA4 (BRG1) in an atypical teratoid/rhabdoid tumor showing retained SMARCB1 (INI1) expression. Am J Surg Pathol 35(6):933–935

    Article  PubMed  Google Scholar 

  32. Won HH, Scott SN, Brannon AR et al (2013) Detecting somatic genetic alterations in tumor specimens by exon capture and massively parallel sequencing. J Vis Exp (80):e50710

    Google Scholar 

  33. Richard Dickersin G, Kline IW, Scully RE (1982) Small cell carcinoma of the ovary with hypercalcemia: a report of eleven cases. Cancer 49(1):188–197

    Article  Google Scholar 

  34. Otte A, Gohring G, Steinemann D et al (2012) A tumor-derived population (SCCOHT-1) as cellular model for a small cell ovarian carcinoma of the hypercalcemic type. Int J Oncol 41(2):765–775. https://doi.org/10.3892/ijo.2012.1468

    Article  CAS  PubMed  Google Scholar 

  35. Otte A, Rauprich F, Hillemanns P et al (2014) In vitro and in vivo therapeutic approach for a small cell carcinoma of the ovary hypercalcaemic type using a SCCOHT-1 cellular model. Orphanet J Rare Dis 9:126. https://doi.org/10.1186/s13023-014-0126-4

    Article  PubMed  PubMed Central  Google Scholar 

  36. Otte A, Yang Y, von der Ohe J et al (2016) SCCOHT tumors acquire chemoresistance and protection by interacting mesenchymal stroma/stem cells within the tumor microenvironment. Int J Oncol 49(6):2453–2463

    Article  CAS  PubMed  Google Scholar 

  37. Geraghty RJ, Capes-Davis A, Davis JM et al (2014) Guidelines for the use of cell lines in biomedical research. Br J Cancer 111(6):1021–1046. https://doi.org/10.1038/bjc.2014.166

    Article  PubMed  PubMed Central  Google Scholar 

  38. Barretina J, Caponigro G, Stransky N et al (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483(7391):603–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bultman S, Gebuhr T, Yee D et al (2000) A Brg1 Null Mutation in the Mouse Reveals Functional Differences among Mammalian SWI/SNF Complexes. Mol Cell 6(6):1287–1295

    Article  CAS  PubMed  Google Scholar 

  40. Bultman S, Herschkowitz J, Godfrey V et al (2007) Characterization of mammary tumors from Brg1 heterozygous mice. Oncogene 27(4):460–468

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the SCCOHT patients, families, clinicians, and support and advocacy groups for their critically important contributions to the IRB-approved study performed at TGen. Our work results from a multi-institutional effort and we thank the many scientists and clinicians who have contributed to this work, as well as Drs. Jeffrey Trent, David Huntsman, and Bernard Weissman for their leadership in these collaborations. Our work has been supported by grants from the National Institutes of Health (R01 CA195670-01), the Anne Rita Monahan Foundation, the Marsha Rivkin Center for Ovarian Cancer Research, the Ovarian Cancer Alliance of Arizona, the Small Cell Ovarian Cancer Foundation, and philanthropic support to the TGen Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William P. D. Hendricks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lang, J.D., Hendricks, W.P.D. (2018). Identification of Driver Mutations in Rare Cancers: The Role of SMARCA4 in Small Cell Carcinoma of the Ovary, Hypercalcemic Type (SCCOHT). In: DiStefano, J. (eds) Disease Gene Identification. Methods in Molecular Biology, vol 1706. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7471-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7471-9_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7470-2

  • Online ISBN: 978-1-4939-7471-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics