Skip to main content

Metasecretome Phage Display

  • Protocol
  • First Online:
  • 5106 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1701))

Abstract

Metasecretome is a collection of cell-surface and secreted proteins that mediate interactions between microbial communities and their environment. These include adhesins, enzymes, surface structures such as pili or flagella, vaccine targets or proteins responsible for immune evasion. Traditional approaches to exploring matasecretome of complex microbial communities via cultivation of microorganisms and screening of individual strains fail to sample extraordinary diversity in these communities, since only a limited fraction of microorganisms are represented by cultures. Advances in culture-independent sequence analysis methods, collectively referred to as metagenomics, offer an alternative approach that enables the direct analysis of collective microbial genomes (metagenome) recovered from environmental samples. This protocol describes a method, metasecretome phage display, which selectively displays the metasecretome portion of the metagenome. The metasecretome library can then be used for two purposes: (1) to sequence the entire metasecretome (using PacBio technology); (2) to identify metasecretome proteins that have a specific function of interest by affinity-screening (bio-panning) using a variety of methods described in other chapters of this volume.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lamont RJ, Jenkinson HF (1998) Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol Mol Biol Rev 62(4):1244–1263

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Orth K, Xu Z, Mudgett MB, Bao ZQ, Palmer LE, Bliska JB, Mangel WF, Staskawicz B, Dixon JE (2000) Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290(5496):1594–1597

    Article  CAS  PubMed  Google Scholar 

  3. Schwarz-Linek U, Hook M, Potts JR (2006) Fibronectin-binding proteins of gram-positive cocci. Microbes Infect 8(8):2291–2298

    Article  CAS  PubMed  Google Scholar 

  4. Lipsitch M, O’Hagan JJ (2007) Patterns of antigenic diversity and the mechanisms that maintain them. J R Soc Interface 4(16):787–802

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bayliss CD, Field D, Moxon ER (2001) The simple sequence contingency loci of Haemophilus influenzae and Neisseria meningitidis. J Clin Invest 107(6):657–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Areschoug T, Carlsson F, Stalhammar-Carlemalm M, Lindahl G (2004) Host-pathogen interactions in Streptococcus pyogenes infections, with special reference to puerperal fever and a comment on vaccine development. Vaccine 22(Suppl 1):S9–S14

    Article  CAS  PubMed  Google Scholar 

  7. Moxon ER, Rainey PB, Nowak MA, Lenski RE (1994) Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr Biol 4(1):24–33

    Article  CAS  PubMed  Google Scholar 

  8. Maione D, Margarit I, Rinaudo CD, Masignani V, Mora M, Scarselli M, Tettelin H, Brettoni C, Iacobini ET, Rosini R, D'Agostino N, Miorin L, Buccato S, Mariani M, Galli G, Nogarotto R, Nardi Dei V, Vegni F, Fraser C, Mancuso G, Teti G, Madoff LC, Paoletti LC, Rappuoli R, Kasper DL, Telford JL, Grandi G (2005) Identification of a universal Group B streptococcus vaccine by multiple genome screen. Science 309:148–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang XY, Lu J, Sun X, He QY (2012) Application of subproteomics in the characterization of Gram-positive bacteria. J Proteome 75(10):2803–2810

    Article  CAS  Google Scholar 

  10. Lee SY, Choi JH, Xu Z (2003) Microbial cell-surface display. Trends Biotechnol 21(1):45–52

    Article  CAS  PubMed  Google Scholar 

  11. Chen W, Georgiou G (2002) Cell-surface display of heterologous proteins: from high-throughput screening to environmental applications. Biotechnol Bioeng 79(5):496–503

    Article  CAS  PubMed  Google Scholar 

  12. Georgiou G, Stathopoulos C, Daugherty PS, Nayak AR, Iverson BL, Curtiss R III (1997) Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat Biotechnol 15(1):29–34

    Article  CAS  PubMed  Google Scholar 

  13. Liu R, Yang C, Xu Y, Xu P, Jiang H, Qiao C (2013) Development of a whole-cell biocatalyst/biosensor by display of multiple heterologous proteins on the Escherichia coli cell surface for the detoxification and detection of organophosphates. J Agric Food Chem 61(32):7810–7816

    Article  CAS  PubMed  Google Scholar 

  14. Åvall-Jääskeläinen S, Lindholm A, Palva A (2003) Surface display of the receptor-binding region of the Lactobacillus brevis S-layer protein in Lactococcus lactis provides nonadhesive lactococci with the ability to adhere to intestinal epithelial cells. Appl Environ Microbiol 69(4):2230–2236

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wernérus H, Ståhl S (2004) Biotechnological applications for surface-engineered bacteria. Biotechnol Appl Biochem 40(3):209–228

    Article  PubMed  Google Scholar 

  16. Rosander A, Bjerketorp J, Frykberg L, Jacobsson K (2002) Phage display as a novel screening method to identify extracellular proteins. J Microbiol Methods 51(1):43–55

    Article  CAS  PubMed  Google Scholar 

  17. Jacobsson K, Rosander A, Bjerketorp J, Frykberg L (2003) Shotgun phage display-selection for bacterial receptins or other exported proteins. Biol Proced Online 5(1):123–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rosander A, Guss B, Pringle M (2011) An IgG-binding protein A homolog in Staphylococcus hyicus. Vet Microbiol 149(1):273–276

    Article  CAS  PubMed  Google Scholar 

  19. Bjerketorp J, Rosander A, Nilsson M, Jacobsson K, Frykberg L (2004) Sorting a Staphylococcus aureus phage display library against ex vivo biomaterial. J Med Microbiol 53(10):945–951

    Article  CAS  PubMed  Google Scholar 

  20. Ciric M, Moon CD, Leahy SC, Creevey CJ, Altermann E, Attwood GT, Rakonjac J, Gagic D (2014) Metasecretome-selective phage display approach for mining the functional potential of a rumen microbial community. BMC Genomics 15:356

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jankovic D, Collett MA, Lubbers MW, Rakonjac J (2007) Direct selection and phage display of a Gram-positive secretome. Genome Biol 8(12):R266

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rakonjac J, Bennett NJ, Spagnuolo J, Gagic D, Russel M (2011) Filamentous bacteriophage: biology, phage display and nanotechnology applications. Curr Issues Mol Biol 13(2):51–76

    CAS  PubMed  Google Scholar 

  23. Russel M (1995) Moving through the membrane with filamentous phages. Trends Microbiol 3(6):223–228

    Article  CAS  PubMed  Google Scholar 

  24. Model P, Jovanovic G, Dworkin J (1997) The Escherichia coli phage shock protein operon. Mol Microbiol 24:255–261

    Article  CAS  PubMed  Google Scholar 

  25. Dotto GP, Enea V, Zinder ND (1981) Functional analysis of bacteriophage f1 intergenic region. Virology 114(2):463–473

    Article  CAS  PubMed  Google Scholar 

  26. Rakonjac J, Jovanovic G, Model P (1997) Filamentous phage infection-mediated gene expression: construction and propagation of the gIII deletion mutant helper phage R408d3. Gene 198:99–103

    Article  CAS  PubMed  Google Scholar 

  27. Rakonjac J, Feng J, Model P (1999) Filamentous phage are released from the bacterial membrane by a two-step mechanism involving a short C-terminal fragment of pIII. J Mol Biol 289(5):1253–1265

    Article  CAS  PubMed  Google Scholar 

  28. Rakonjac J, Model P (1998) Roles of pIII in filamentous phage assembly. J Mol Biol 282(1):25–41

    Article  CAS  PubMed  Google Scholar 

  29. Gagic D, Ciric M, Wen WX, Ng F, Rakonjac J (2016) Exploring the secretomes of microbes and microbial communities using filamentous phage display. Front Microbiol 7:429

    PubMed  PubMed Central  Google Scholar 

  30. Ploss M, Facey SJ, Bruhn C, Zemel L, Hofmann K, Stark RW, Albert B, Hauer B (2014) Selection of peptides binding to metallic borides by screening M13 phage display libraries. BMC Biotechnol 14:12

    Article  PubMed  PubMed Central  Google Scholar 

  31. Naik RR, Brott LL, Clarson SJ, Stone MO (2002) Silica-precipitating peptides isolated from a combinatorial phage display peptide library. J Nanosci Nanotechnol 2(1):95–100

    Article  CAS  PubMed  Google Scholar 

  32. Guo J, Catchmark JM, Mohamed MN, Benesi AJ, Tien M, Kao TH, Watts HD, Kubicki JD (2013) Identification and characterization of a cellulose binding heptapeptide revealed by phage display. Biomacromolecules 14(6):1795–1805

    Article  CAS  PubMed  Google Scholar 

  33. Dennissen MA, Jenniskens GJ, Pieffers M, Versteeg EM, Petitou M, Veerkamp JH, van Kuppevelt TH (2002) Large, tissue-regulated domain diversity of heparan sulfates demonstrated by phage display antibodies. J Biol Chem 277(13):10982–10986

    Article  CAS  PubMed  Google Scholar 

  34. Pavoni E, Vaccaro P, Anastasi AM, Minenkova O (2014) Optimized selection of anti-tumor recombinant antibodies from phage libraries on intact cells. Mol Immunol 57(2):317–322

    Article  CAS  PubMed  Google Scholar 

  35. Babickova J, Tothova L, Boor P, Celec P (2013) In vivo phage display—a discovery tool in molecular biomedicine. Biotechnol Adv 31(8):1247–1259

    Article  PubMed  Google Scholar 

  36. Dias-Neto E, Nunes DN, Giordano RJ, Sun J, Botz GH, Yang K, Setubal JC, Pasqualini R, Arap W (2009) Next-generation phage display: integrating and comparing available molecular tools to enable cost-effective high-throughput analysis. PLoS One 4(12):e8338

    Article  PubMed  PubMed Central  Google Scholar 

  37. Di Niro R, Sulic AM, Mignone F, D'Angelo S, Bordoni R, Iacono M, Marzari R, Gaiotto T, Lavric M, Bradbury AR, Biancone L, Zevin-Sonkin D, De Bellis G, Santoro C, Sblattero D (2010) Rapid interactome profiling by massive sequencing. Nucleic Acids Res 38(9):e110

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ravn U, Gueneau F, Baerlocher L, Osteras M, Desmurs M, Malinge P, Magistrelli G, Farinelli L, Kosco-Vilbois MH, Fischer N (2010) By-passing in vitro screening--next generation sequencing technologies applied to antibody display and in silico candidate selection. Nucleic Acids Res 38(21):e193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hoen PA, Jirka SM, Ten Broeke BR, Schultes EA, Aguilera B, Pang KH, Heemskerk H, Aartsma-Rus A, van Ommen GJ, den Dunnen JT (2012) Phage display screening without repetitious selection rounds. Anal Biochem 421(2):622–631

    Article  PubMed  Google Scholar 

  40. Mathonet P, Ullman CG (2013) The application of next generation sequencing to the understanding of antibody repertoires. Front Immunol 4:265

    Article  PubMed  PubMed Central  Google Scholar 

  41. Travers KJ, Chin CS, Rank DR, Eid JS, Turner SW (2010) A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res 38(15):e159

    Article  PubMed  PubMed Central  Google Scholar 

  42. Russel M (1993) Protein-protein interactions during filamentous phage assembly. J Mol Biol 231(3):689–697

    Article  CAS  PubMed  Google Scholar 

  43. Ciric M. Massey University metasecretome phage display: a new approach for mining surface and secreted proteins from microbial communities: a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biochemistry at Massey University, Palmerston North, New Zealand

    Google Scholar 

Download references

Acknowledgment

This work was funded by the New Zealand Ministry of Business, Innovation and Employment (contract C10X0803), The Royal Society of New Zealand through a Marsden Fast Start grant and Palmerston North Medical Research Foundation. M.C. was partially supported by the Institute of Fundamental Sciences (Massey University, New Zealand) and F.N. was supported by a Commonwealth Fellowship and a Massey University Bursary. We would like to thank DSMZ Sequencing facility (Germany) and Dr. Boyke Bunk for help in development and optimization of protocol for PacBio sequencing of phage-display libraries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragana Gagic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ciric, M., Ng, F., Rakonjac, J., Gagic, D. (2018). Metasecretome Phage Display. In: Hust, M., Lim, T. (eds) Phage Display. Methods in Molecular Biology, vol 1701. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7447-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7447-4_29

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7446-7

  • Online ISBN: 978-1-4939-7447-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics