Skip to main content

Enzyme Nicotinamide Cofactor Specificity Reversal Guided by Automated Structural Analysis and Library Design

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1671))

Abstract

The specificity of enzymes for nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) as redox carriers can pose a significant hurdle for metabolic engineering and synthetic biology applications, where switching the specificity might be beneficial. We have developed an easy-to-use computational tool (CSR-SALAD) for the design of mutant libraries to simplify the process of reversing the cofactor specificity of an enzyme. Here, we describe the optimal use of this tool and present methods for its application in a laboratory setting.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wang Y, San K-Y, Bennett GN (2013) Cofactor engineering for advancing chemical biotechnology. Curr Opin Biotechnol 24(6):994–999

    Article  CAS  PubMed  Google Scholar 

  2. Matsushika A, Watanabe S, Kodaki T, Makino K, Inoue H, Murakami K, Takimura O, Sawayama S (2008) Expression of protein engineered NADP plus -dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol 81(2):243–255

    Article  CAS  PubMed  Google Scholar 

  3. Tamakawa H, Ikushima S, Yoshida S (2011) Ethanol production from xylose by a recombinant Candida utilis strain expressing protein-engineered xylose reductase and xylitol dehydrogenase. Biosci Biotechnol Biochem 75(10):1994–2000

    Article  CAS  PubMed  Google Scholar 

  4. Scrutton NS, Berry A, Perham RN (1990) Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature 343(6253):38–43

    Article  CAS  PubMed  Google Scholar 

  5. Cahn JKB, Werlang CA, Baumschlager A, Brinkmann-Chen S, Mayo SL, Arnold FH (2016) A general tool for engineering the NAD/NADP cofactor preference of oxidoreductases. ACS Synth Biol 6(2):326–333

    Article  PubMed  Google Scholar 

  6. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schrodinger LLC (2010) The PyMOL molecular graphics system, version 1.3r1

    Google Scholar 

  8. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modeling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  9. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Engqvist MKM, McIsaac RS, Dollinger P, Flytzanis NC, Abrams M, Schor S, Arnold FH (2015) Directed evolution of Gloeobacter violaceus rhodopsin spectral properties. J Mol Biol 427(1):205–220

    Article  CAS  PubMed  Google Scholar 

  11. Sugimoto N, Nakano S-I, Yoneyama M, Honda K-I (1996) Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes. Nucleic Acids Res 24(22):4501–4505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gibson DG (2011) Chapter 15: Enzymatic assembly of overlapping DNA fragments. Methods Enzymol, 498:349–361

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Gordon and Betty Moore Foundation through grant number GBMF2809 to the Caltech Programmable Molecular Technology Initiative and by American Recovery and Reinvestment Act (ARRA) funds through the National Institutes of Health Shared Instrumentation Grant Program, grant number S10RR027203 to F.H.A. J.K.B.C acknowledges the support of the Resnick Sustainability Institute (Caltech). The cloning method described in Subheading 3.3 was developed by Martin Engqvist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frances H. Arnold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cahn, J.K.B., Brinkmann-Chen, S., Arnold, F.H. (2018). Enzyme Nicotinamide Cofactor Specificity Reversal Guided by Automated Structural Analysis and Library Design. In: Jensen, M.K., Keasling, J.D. (eds) Synthetic Metabolic Pathways. Methods in Molecular Biology, vol 1671. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7295-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7295-1_2

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7294-4

  • Online ISBN: 978-1-4939-7295-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics