Skip to main content

The Analysis of Ethnic Mixtures

  • Protocol
  • First Online:
Statistical Human Genetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1666))

Abstract

Population of ethnic mixtures can be useful in genetic studies. Admixture mapping, or mapping by admixture linkage disequilibrium (MALD), is specially developed for admixed populations and can supplement traditional genome-wide association analyses in the search for genetic variants underlying complex traits. Admixture mapping tests the association between a trait and locus-specific ancestries. The locus-specific ancestries are in linkage disequilibrium (LD), which is generated by an admixture process between genetically distinct ancestral populations. Because of the highly correlated-locus specific ancestries, admixture mapping performs many fewer independent tests across the genome than current genome-wide association analysis. Therefore, admixture mapping can be more powerful because it reduces the penalty due to multiple tests. In this chapter, we introduce the theory behind admixture mapping and explain how to conduct the analysis in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Risch NJ (1992) Mapping genes for complex disease using association studies with recently admixed populations. Am J Hum Genet 51:13

    Google Scholar 

  2. McKeigue PM (1998) Mapping genes that underlie ethnic differences in disease risk: methods for detecting linkage in admixed populations, by conditioning on parental admixture. Am J Hum Genet 63:241–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhu X, Cooper RS, Elston RC (2004) Linkage analysis of a complex disease through use of admixed populations. Am J Hum Genet 74:1136–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhu X, Zhang S, Tang H, Cooper R (2006) A classical likelihood based approach for admixture mapping using EM algorithm. Hum Genet 120:431–445

    Article  PubMed  Google Scholar 

  5. Patterson N, Hattangadi N, Lane B, Lohmueller KE, Hafler DA et al (2004) Methods for high-density admixture mapping of disease genes. Am J Hum Genet 74:979–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hoggart CJ, Shriver MD, Kittles RA, Clayton DG, McKeigue PM (2004) Design and analysis of admixture mapping studies. Am J Hum Genet 74:965–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Montana G, Pritchard JK (2004) Statistical tests for admixture mapping with case-control and cases-only data. Am J Hum Genet 75:771–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang C, Chen K, Seldin MF, Li H (2004) A hidden Markov modeling approach for admixture mapping based on case-control data. Genet Epidemiol 27:225–239

    Article  PubMed  Google Scholar 

  9. Zhu X, Tang H, Risch N (2008) Admixture mapping and the role of population structure for localizing disease genes. Adv Genet 60:547–569

    PubMed  Google Scholar 

  10. Sha Q, Zhang X, Zhu X, Zhang S (2006) Analytical correction for multiple testing in admixture mapping. Hum Hered 62:55–63

    Article  PubMed  Google Scholar 

  11. Zhu X, Zhang S, Zhao H, Cooper RS (2002) Association mapping, using a mixture model for complex traits. Genet Epidemiol 23(2):181–196

    Article  PubMed  Google Scholar 

  12. Basu A, Tang H, Arnett D, CC G, Mosley T et al (2009) Admixture mapping of quantitative trait loci for BMI in African Americans: evidence for loci on chromosomes 3q, 5q, and 15q. Obesity (Silver Spring) 17:1226–1231

    CAS  Google Scholar 

  13. Zhu X, Young JH, Fox E, Keating BJ, Franceschini N, Kang S, Tayo B, Adeyemo A, Sun YV, Li Y et al (2011) Combined admixture mapping and association analysis identifies a novel blood pressure genetic locus on 5p13: contributions from the CARe consortium. Hum Mol Genet 20(11):2285–2295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tang H, Coram M, Wang P, Zhu X, Risch N (2006) Reconstructing genetic ancestry blocks in admixed individuals. Am J Hum Genet 79:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sundquist A, Fratkin E, Do CB, Batzoglou S (2008) Effect of genetic divergence in identifying ancestral origin using HAPAA. Genome Res 18:676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sankararaman S, Sridhar S, Kimmel G, Halperin E (2008) Estimating local ancestry in admixed populations. Am J Hum Genet 82:290–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Long JC (1991) The genetic structure of admixed populations. Genetics 127(2):417–428

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA et al (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  CAS  PubMed  Google Scholar 

  21. Li Y, Willer C, Sanna S, Abecasis G (2009) Genotype imputation. Annu Rev Genomics Hum Genet 10:387–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li JZ, Absher DM, Tang H, Southwick AM, Casto AM, Ramachandran S, Cann HM, Barsh GS, Feldman M, Cavalli-Sforza LL et al (2008) Worldwide human relationships inferred from genome-wide patterns of variation. Science 319(5866):1100–1104

    Article  CAS  PubMed  Google Scholar 

  23. Baran Y, Pasaniuc B, Sankararaman S, Torgerson DG, Gignoux C, Eng C, Rodriguez-Cintron W, Chapela R, Ford JG, Avila PC et al (2012) Fast and accurate inference of local ancestry in Latino populations. Bioinformatics 28(10):1359–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pasaniuc B, Sankararaman S, Kimmel G, Halperin E (2009) Inference of locus-specific ancestry in closely related populations. Bioinformatics 25(12):i213–i221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brisbin A, Bryc K, Byrnes J, Zakharia F, Omberg L, Degenhardt J, Reynolds A, Ostrer H, Mezey JG, Bustamante CD (2012) PCAdmix: principal components-based assignment of ancestry along each chromosome in individuals with admixed ancestry from two or more populations. Hum Biol 84(4):343–364

    Article  PubMed  PubMed Central  Google Scholar 

  26. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A et al (2009) Finding the missing heritability of complex diseases. Nature 461(7265):747–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bowden DW, An SS, Palmer ND, Brown WM, Norris JM, Haffner SM, Hawkins GA, Guo X, Rotter JI, Chen YD et al (2010) Molecular basis of a linkage peak: exome sequencing and family-based analysis identify a rare genetic variant in the ADIPOQ gene in the IRAS Family Study. Hum Mol Genet 19(20):4112–4120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhu X, Feng T, Li Y, Lu Q, Elston RC (2010) Detecting rare variants for complex traits using family and unrelated data. Genet Epidemiol 34(2):171–187

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang H, Zhu X (2014) De novo mutations discovered in 8 Mexican American families through whole genome sequencing. BMC Proc 8(Suppl 1 Genetic Analysis Workshop 18 Vanessa Olmo):S24

    Article  PubMed  PubMed Central  Google Scholar 

  30. Veltman JA, Brunner HG (2012) De novo mutations in human genetic disease. Nat Rev Genet 13(8):565–575

    Article  CAS  PubMed  Google Scholar 

  31. O’Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S, Karakoc E, Mackenzie AP, Ng SB, Baker C et al (2011) Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet 43(6):585–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, Levy R, Ko A, Lee C, Smith JD et al (2012) Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485(7397):246–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Girard SL, Gauthier J, Noreau A, Xiong L, Zhou S, Jouan L, Dionne-Laporte A, Spiegelman D, Henrion E, Diallo O et al (2011) Increased exonic de novo mutation rate in individuals with schizophrenia. Nat Genet 43(9):860–863

    Article  CAS  PubMed  Google Scholar 

  34. Wang H (2016) Local ancestry inference and its implication in searching for selection evidence in recent admixed population. Ph.D. dissertation, Case Western Reserve University

    Google Scholar 

  35. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tang H, Choudhry S, Mei R, Morgan M, Rodriguez-Cintron W et al (2007) Recent genetic selection in the ancestral admixture of Puerto Ricans. Am J Hum Genet 81:626–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhu X, Cooper RS (2007) Admixture mapping provides evidence of association of the VNN1 gene with hypertension. PLoS ONE 2:e1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang YJ, Tayo BO, Bandyopadhyay A, Wang H, Feng T, Franceschini N, Tang H, Gao J, Sung YJ, Consortium CB et al (2014) The association of the vanin-1 N131S variant with blood pressure is mediated by endoplasmic reticulum-associated degradation and loss of function. PLoS Genet 10:e1004641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Smith MW, Patterson N, Lautenberger JA, Truelove AL, McDonald GJ et al (2004) A high-density admixture map for disease gene discovery in African Americans. Am J Hum Genet 74:1001–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 55:997–1004

    Article  CAS  PubMed  Google Scholar 

  41. Qin H, Zhu X (2012) Power comparison of admixture mapping and direct association analysis in genome-wide association studies. Genet Epidemiol 36:235–243

    Article  PubMed  PubMed Central  Google Scholar 

  42. Li J, Ji L (2005) Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity 95:221–227

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from the National Human Genome Research Institute (HG003054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Zhu, X., Wang, H. (2017). The Analysis of Ethnic Mixtures. In: Elston, R. (eds) Statistical Human Genetics. Methods in Molecular Biology, vol 1666. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7274-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7274-6_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7273-9

  • Online ISBN: 978-1-4939-7274-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics