Skip to main content

Correcting for Ascertainment

  • Protocol
  • First Online:
Statistical Human Genetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1666))

  • 3355 Accesses

Abstract

Data used to study human genetics are often not obtained by simple random sampling, which is assumed by many statistical methods, especially those that are based on likelihood for making inferences. There is a well-developed theory to correct likelihoods based on sibship data whether or not the exact mode of ascertainment is known. In the case of larger pedigrees, however, the problem is much more difficult unless they are recruited into the sample by single ascertainment. There is no one piece of software that analyzes ascertainment in general, so most of this chapter is devoted to theory. A general method by which one general genetic analysis software package corrects pedigree data for ascertainment is briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Weinberg W (1912) Further contributions to the theory of heredity. Part 4. On methods and sources of error in studies of Mendelian ratios in man. Arch für Rassen und Gesellschaftsbiologie 9:165–174

    Google Scholar 

  2. Weinberg W (1912) Further contributions to the theory of heredity. Part 5. On the inheritance of the predisposition to blood disease with methodological supplements to my sibship method. Arch für Rassen und Gesellschaftsbiologie 9:694–709

    Google Scholar 

  3. Weinberg W (1927) Mathematical foundations of the proband method. Z für Indukt Abstamm and Vererbungslehre 48:179–228

    Google Scholar 

  4. Ginsburg E, Malkin I, Elston RC (2006) Theoretical aspects of pedigree analysis. Tel Aviv, Ramot

    Google Scholar 

  5. Elston RC, Sobel E (1979) Sampling considerations in the gathering and analysis of pedigree data. Am J Hum Genet 31:62–69

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Bailey NTJ (1951) The estimation of the frequencies of recessives with incomplete multiple ascertainment. Ann Eugen 16:215–222

    Article  CAS  PubMed  Google Scholar 

  7. Li CC, Mantel N (1968) A simple method for estimating the segregation ratio under complete ascertainment. Am J Hum Genet 20:61–81

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Fisher RA (1934) The effect of methods of ascertainment upon the estimation of frequencies. Ann Hum Genet 6:13–25

    Google Scholar 

  9. Haldane JBS (1938) The estimation of the frequencies of recessive conditions in man. Ann Hum Genet 8:255–262

    Google Scholar 

  10. Stene J (1977) Assumptions for different ascertainment models in human genetics. Biometrics 33:523–527

    Article  PubMed  Google Scholar 

  11. Ewens WJ, Shute NCE (1986) A resolution of the ascertainment sampling scheme. I. Theory. Theor Popul Biol 30:388–412

    Article  CAS  PubMed  Google Scholar 

  12. George VT, Elston RC (1991) An overview of the classical segregation analysis model for independent sibships. Biom J  33:741–753

    Google Scholar 

  13. Ewens WJ (1991) Ascertainment biases and their resolution in biological surveys. In: Rao CR, Chakraborty R (eds) Handbook of statistics. Elsevier North-Holland, Amsterdam

    Google Scholar 

  14. Cannings CC, Thompson EA (1977) Ascertainment in the sequential sampling of pedigrees. Clin Genet 12:208–212

    Article  CAS  PubMed  Google Scholar 

  15. Vieland VJ, Hodge SE (1995) Inherent intractability of the ascertainment problem for pedigree data: a general likelihood framework. Am J Hum Genet 56:33–43

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Hodge SE, Vieland VJ (1996) The essence of single ascertainment. Genetics 144:1215–1223

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Rabinowitz D (1997) A pseudo-likelihood approach to correcting for ascertainment in family studies. Am J Hum Genet 59:726–730

    Google Scholar 

  18. Vieland VJ, Hodge SE (1996) The problem of ascertainment for linkage analysis. Am J Hum Genet 58:1072–1084

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Slager SL, Vieland VJ (1997) Investigating the numerical effects of ascertainment bias in linkage analysis: development of methods and preliminary results. Genet Epidemiol 14:1119–1124

    Article  CAS  PubMed  Google Scholar 

  20. Sun X et al (2012) A variable age of onset segregation model for linkage analysis, with correction for ascertainment, applied to glioma. Cancer Epidemiol Biomarkers Prev 21:2242–2251

    Google Scholar 

  21. S.A.G.E. 6.4 (2016). Statistical Analysis for Genetic Epidemiology:  https://darwin.cwru.edu

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren Ewens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ewens, W., Elston, R.C. (2017). Correcting for Ascertainment. In: Elston, R. (eds) Statistical Human Genetics. Methods in Molecular Biology, vol 1666. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7274-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7274-6_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7273-9

  • Online ISBN: 978-1-4939-7274-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics