Skip to main content

Padlock Probes to Detect Single Nucleotide Polymorphisms

  • Protocol
Book cover RNA Detection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1649))

Abstract

Rapid development of high-throughput DNA analyzation methods has enabled global characterization of genetic landscapes and aberrations in study subjects in a time and cost effective fashion. In most methods, however, spatial tissue context is lost since sample preparation requires isolation of nucleic acids out of their native environment. We hereby present the most recent protocol for multiplexed, in situ detection of mRNAs and single nucleotide polymorphisms using padlock probes and rolling circle amplification. We take advantage of a single nucleotide variant within conserved ACTB mRNA to successfully differentiate human and mice cocultured cells and apply presented protocol to genotype PCDH X and Y homologs in human brain. We provide a method for automated characterization and quantitation of target mRNA in single cells or chosen tissue area. mRNA of interest, harboring a polymorphism, is first reverse-transcribed to cDNA. Allele specific padlock probes are hybridized to the cDNA target and enzymatically circularized maintaining a physical link with the parent mRNA molecule. Lastly, circularized probes are replicated in situ, using rolling circle amplification mechanism to facilitate detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kitpipit T, Tobe SS, Kitchener AC et al (2012) The development and validation of a single SNaPshot multiplex for tiger species and subspecies identification – implications for forensic purposes. Forensic Sci Int Genet 6:250–257

    Article  CAS  Google Scholar 

  2. Huang C, Chang M, Huang M, Lee F (2011) Rapid identification of Lactobacillus plantarum group using the SNaPshot minisequencing assay. Syst Appl Microbiol 34:586–589

    Article  CAS  Google Scholar 

  3. Diekstra A, Bosgoed E, Rikken A et al (2015) Translating Sanger-based routine DNA diagnostics into generic massive parallel ion semiconductor sequencing. Clin Chem 61:154–162

    Article  CAS  Google Scholar 

  4. Lubeck E, Cai L (2012) Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat Methods 9:743–748

    Article  CAS  Google Scholar 

  5. Player AN, Shen LP, Kenny D et al (2001) Single-copy gene detection using branched DNA (bDNA) in situ hybridization. J Histochem Cytochem 49:603–612

    Article  CAS  Google Scholar 

  6. Choi HMT, Beck V, Pierce N (2014) Next-generation in situ hybridization chain reaction: higher gain, lower cost, greater durability. ACS Nano 8:4284–4294

    Article  CAS  Google Scholar 

  7. Nilsson M, Malmgren H, Samiotaki M et al (1994) Padlock probes: circularizing oligonucleotides for localized DNA detection. Science 265:2085–2088

    Article  CAS  Google Scholar 

  8. Nilsson M, Banér J, Mendel-Hartvig M et al (2002) Making ends meet in genetic analysis using padlock probes. Hum Mutat 19:410–415

    Article  CAS  Google Scholar 

  9. Petersen M, Wengel J (2003) LNA: a versatile tool for therapeutics and genomics. Trends Biotechnol 21:74–81

    Article  CAS  Google Scholar 

  10. Fire A, Xu SQ (1995) Rolling replication of short DNA circles. Proc Natl Acad Sci U S A 92:4641–4645

    Article  CAS  Google Scholar 

  11. Banér J, Nilsson M, Mendel-Hartvig M, Landegren U (1998) Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res 26:5073–5078

    Article  Google Scholar 

  12. Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res 40:1–12

    Article  Google Scholar 

  13. Larsson C, Grundberg I, Söderberg O (2010) In situ detection and genotyping of individual mrna molecules. Nat Methods 7:395–397

    Article  CAS  Google Scholar 

  14. Stenberg J, Nilsson M, Landegren U (2005) ProbeMaker: an extensible framework for design of sets of oligonucleotide probes. BMC Bioinformatics. doi:10.1186/1471-2105-6-229

  15. Luo J, Bergstrom DE, Barany F (1996) Improving the fidelity of Thermus thermophilus DNA ligase. Nucleic Acids Res 24:3071–3078

    Article  CAS  Google Scholar 

  16. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  Google Scholar 

  17. Carpenter AE, Jones TR, Lamprecht MR et al (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100

    Article  Google Scholar 

  18. Johansson MM, Lundin E, Qian X et al (2016) Spatial sexual dimorphism of X and Y homolog gene expression in the human central nervous system during early male development. Biol Sex Differ 7:5

    Article  Google Scholar 

  19. Larsson C, Koch J, Nygren A et al (2004) In situ genotyping individual DNA molecules by target-primed rolling-circle amplification of padlock probes. Nat Methods 1:227–232

    Article  CAS  Google Scholar 

  20. Levin JD, Fiala D, Samala MF et al (2006) Position-dependent effects of locked nucleic acid ( LNA ) on DNA sequencing and PCR primers. Nucleic Acids Res 34:1–11

    Article  Google Scholar 

  21. Wolf B, Lesnaw JA, Reichmann ME (1970) A mechanism of the irreversible inactivation of bovine pancreatic ribonuclease by diethylpyrocarbonate. Eur J Biochem 13:519–525

    Article  CAS  Google Scholar 

  22. Grundberg I, Kiflemariam S, Mignardi M et al (2013) In situ mutation detection and visualization of intratumor heterogeneity for cancer research and diagnostics. Oncotarget 4:2407–2418

    Article  Google Scholar 

  23. Ke R, Mignardi M, Pacureanu A et al (2013) In situ sequencing for RNA analysis in preserved tissue and cells. Nat Methods 10:857–860

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mats Nilsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Krzywkowski, T., Nilsson, M. (2018). Padlock Probes to Detect Single Nucleotide Polymorphisms. In: Gaspar, I. (eds) RNA Detection. Methods in Molecular Biology, vol 1649. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7213-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7213-5_14

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7212-8

  • Online ISBN: 978-1-4939-7213-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics