Skip to main content

Design and Crystallography of Self-Assembling RNA Nanostructures

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1632))

Abstract

Biological RNA architectures are composed of autonomously folding modules which can be tailored as building blocks for the construction of RNA nanostructures. Designed base pair interactions allow complex nano-objects to self-assemble from simple RNA motifs. X-ray crystallography plays an important role in both the design and analysis of such RNA nanostructures. Here, we describe methods for the design and X-ray crystallographic structure analysis of an RNA square and two different triangles, which self-assemble from short oligonucleotides and serve as a platform for building functional nano-sized nucleic acid architectures.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Jaeger L, Leontis N (2000) Tecto-RNA: one-dimensional self-assembly through tertiary interactions. Angew Chem Int Ed Engl 39:2521–2524

    Article  CAS  PubMed  Google Scholar 

  2. Shu D, Huang LP, Hoeprich S et al (2003) Construction of phi29 DNA-packaging RNA monomers, dimers, and trimers with variable sizes and shapes as potential parts for nanodevices. J Nanosci Nanotechnol 3:295–302

    Article  CAS  PubMed  Google Scholar 

  3. Chworos A, Severcan I, Koyfman AY et al (2004) Building programmable jigsaw puzzles with RNA. Science 306:2068–2072

    Article  CAS  PubMed  Google Scholar 

  4. Nasalean L, Baudrey S, Leontis NB et al (2006) Controlling RNA self-assembly to form filaments. Nucleic Acids Res 34:1381–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bindewald E, Grunewald C, Boyle B et al (2008) Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler. J Mol Graph Model 27:299–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Severcan I, Geary C, Verzemnieks E et al (2009) Square-shaped RNA particles from different RNA folds. Nano Lett 9:1270–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Severcan I, Geary C, Chworos A et al (2010) A polyhedron made of tRNAs. Nat Chem 2(9):772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Afonin KA, Bindewald E, Yaghoubian AJ et al (2010) In vitro assembly of cubic RNA-based scaffolds designed in silico. Nat Nanotechnol 5:676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Geary C, Chworos A, Jaeger L (2011) Promoting RNA helical stacking via A-minor junctions. Nucleic Acids Res 39:1066–1080

    Article  CAS  PubMed  Google Scholar 

  10. Grabow WW, Zakrevsky P, Afonin KA et al (2011) Self-assembling RNA nanorings based on RNAI/II inverse kissing complexes. Nano Lett 11:878–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ohno H, Kobayashi T, Kabata R et al (2011) Synthetic RNA–protein complex shaped like an equilateral triangle. Nat Nanotechnol 6:116–120

    Article  CAS  PubMed  Google Scholar 

  12. Dibrov SM, McLean J, Parsons J et al (2011) Self-assembling RNA square. Proc Natl Acad Sci U S A 108:6405–6408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bindewald E, Afonin K, Jaeger L et al (2011) Multistrand RNA secondary structure prediction and nanostructure design including pseudoknots. ACS Nano 5:9542–9551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Geary C, Rothemund PWK, Andersen ES (2014) A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science 345:799–804

    Article  CAS  PubMed  Google Scholar 

  15. Boerneke MA, Dibrov SM, Hermann T (2016) Crystal-structure-guided design of self-assembling RNA nanotriangles. Angew Chem Int Ed 55:4097–4100

    Article  CAS  Google Scholar 

  16. Parlea L, Bindewald E, Sharan R et al (2016) Ring catalog: a resource for designing self-assembling RNA nanostructures. Methods 103:128–137

    Article  CAS  PubMed  Google Scholar 

  17. Boerneke MA, Hermann T (2015) Ligand-responsive RNA mechanical switches. RNA Biol 12:780–786

    Article  PubMed  PubMed Central  Google Scholar 

  18. Boerneke MA, Dibrov SM, Gu J et al (2014) Functional conservation despite structural divergence in ligand-responsive RNA switches. Proc Natl Acad Sci U S A 111:15952–15957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326

    Article  CAS  Google Scholar 

  20. Adams PD, Grosse-Kunstleve RW, Hung LW et al (2002) PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58:1948–1954

    Article  PubMed  Google Scholar 

  21. Collaborative Computational Project, Number 4 (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50:760–763

    Article  Google Scholar 

  22. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  PubMed  Google Scholar 

  23. WL DeLano (2002) The PyMOL molecular graphics system, version 11, Schrödinger LLC http://wwwpymolorg

  24. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53:240–255

    Article  CAS  PubMed  Google Scholar 

  25. Auffinger P, Grover N, Westhof E (2011) Metal ion binding to RNA. Met Ions Life Sci 9:1–35

    CAS  PubMed  Google Scholar 

  26. McCoy AJ, Grosse-Kunstleve RW, Adams PD et al (2007) Phaser crystallographic software. J Appl Cryst 40:658–674

    Article  CAS  Google Scholar 

  27. MA Boerneke (2016) Ligand-responsive RNA switches: viral translation regulators, therapeutic targets and tunable building blocks for nanotechnology. Dissertation, University of California, San Diego, 2016

    Google Scholar 

  28. Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with imageJ. Biophotonics International 11:36–42

    Google Scholar 

  29. Dibrov SM, Hermann T (2015) Structure of the HCV internal ribosome entry site subdomain IIa RNA in complex with a viral translation inhibitor. In: Nucleic acid crystallography: methods and protocols, pp 1–356

    Google Scholar 

Download references

Acknowledgment

The research outlined here was supported in part by the National Institutes of Health, grant R01 AI72012, and the UCSD Academic Senate, grant No. RM069B. M. A. B. was supported by a GAANN fellowship from the US Department of Education. Instrumentation at the UCSD Biomolecule Crystallography Facility was acquired with funding from the National Institutes of Health, grant OD011957. Use of the Advanced Photon Source for X-ray diffraction data collection was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38. Use of the IMCA-CAT beamline 17-ID at the Advanced Photon was supported by the companies of the Industrial Macromolecular Crystallography Association through a contract with the Center for Advanced Radiation Sources at the University of Chicago.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Boerneke, M.A., Hermann, T. (2017). Design and Crystallography of Self-Assembling RNA Nanostructures. In: Bindewald, E., Shapiro, B. (eds) RNA Nanostructures . Methods in Molecular Biology, vol 1632. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7138-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7138-1_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7137-4

  • Online ISBN: 978-1-4939-7138-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics