Skip to main content

Rolling Circle Transcription for the Self-Assembly of Multimeric RNAi Structures and Its Applications in Nanomedicine

  • Protocol
  • First Online:
RNA Nanostructures

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1632))

Abstract

The enzymatic process of rolling circle transcription (RCT) enables self-assembly of multimeric RNAi structures from a circular DNA template. The self-assembled RNAi structures can be manipulated easily by simple base pairing rules with short DNA fragments for constructing multifunctional nanoparticles in the field of nanomedicine. Here we describe the method to generate multifunctional RNAi nanoparticles applicable in nanomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shu Y, Pi F, Sharma A, Rajabi M, Haque F, Shu D, Leggas M, Evers BM, Guo P (2014) Stable RNA nanoparticles as potential new generation drugs for cancer therapy. Adv Drug Deliv Rev 66:74–89

    Article  CAS  PubMed  Google Scholar 

  2. Burnett JC, Rossi JJ (2012) RNA-based therapeutics: current progress and future prospects. Chem Biol 19:60–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang Q, Storm G, Molema G, Lu PY, Scaria PV, Woodle MC (2004) Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res 32:e149

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yin JQ, Gao J, Shao R, Tian WN, Wang J, Wan Y (2003) siRNA agents inhibit oncogene expression and attenuate human tumor cell growth. J Exp Ther Oncol 3:194–204

    Article  CAS  PubMed  Google Scholar 

  5. Jiang M, Milner J (2002) Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene 21:6041–6048

    Article  CAS  PubMed  Google Scholar 

  6. Bobbin ML, Rossi JJ (2016) RNA Interference (RNAi)-Based therapeutics: delivering on the promise? Annu Rev Pharmacol Toxicol 56:103–122

    Article  CAS  PubMed  Google Scholar 

  7. Jang M, Kim JH, Nam HY, Kwon IC, Ahn HJ (2015) Design of a platform technology for systemic delivery of siRNA to tumours using rolling circle transcription. Nat Commun 6:7930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee JB, Hong J, Bonner DK, Poon Z, Hammond PT (2012) Self-assembled RNA interference microsponges for efficient siRNA delivery. Nat Mater 11:316–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Daly TA, Wang M, Regen SL (2011) The origin of cholesterol's condensing effect. Langmuir 27:2159–2161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ge Q, Ilves H, Dallas A, Kumar P, Shorenstein J, Kazakov SA, Johnston BH (2010) Minimal-length short hairpin RNAs: the relationship of structure and RNAi activity. RNA 16:106–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Han D, Park Y, Nam H, Lee JB (2014) Enzymatic size control of RNA particles using complementary rolling circle transcription (cRCT) method for efficient siRNA production. Chem Commun (Camb) 50:11665–11667

    Article  CAS  Google Scholar 

  12. Meyer RR, Simpson MV (1969) DNA biosynthesis in mitochondria. Differential inhibition of mitochondrial and nuclear DNA polymerases by the mutagenic dyes ethidium bromide and acriflavin. Biochem Biophys Res Commun 34:238–244

    Article  CAS  PubMed  Google Scholar 

  13. Kuhn H, Demidov VV, Coull JM, Fiandaca MJ, Gildea BD, Frank-Kamenetskii MD (2002) Hybridization of DNA and PNA molecular beacons to single-stranded and double-stranded DNA targets. J Am Chem Soc 124:1097–1103

    Article  CAS  PubMed  Google Scholar 

  14. Straus NA, Bonner TI (1972) Temperature dependence of RNA-DNA hybridization kinetics. Biochim Biophys Acta 277:87–95

    Article  CAS  PubMed  Google Scholar 

  15. Podder SK (1971) Co-operative non-enzymic base recognition. A kinetic study of interaction between GpGpGpC and GpCpCpC and of self-association of GpGpGpC. Eur J Biochem 22:467–477

    Article  CAS  PubMed  Google Scholar 

  16. Vlashi E, Kelderhouse LE, Sturgis JE, Low PS (2013) Effect of folate-targeted nanoparticle size on their rates of penetration into solid tumors. ACS Nano 7:8573–8582

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung Jun Ahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Jang, M., Ahn, H.J. (2017). Rolling Circle Transcription for the Self-Assembly of Multimeric RNAi Structures and Its Applications in Nanomedicine. In: Bindewald, E., Shapiro, B. (eds) RNA Nanostructures . Methods in Molecular Biology, vol 1632. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7138-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7138-1_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7137-4

  • Online ISBN: 978-1-4939-7138-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics